Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
EMBO J ; 41(18): e108206, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35996853

RESUMEN

Adipose stem and precursor cells (ASPCs) give rise to adipocytes and determine the composition and plasticity of adipose tissue. Recently, several studies have demonstrated that ASPCs partition into at least three distinct cell subpopulations, including the enigmatic CD142+ cells. An outstanding challenge is to functionally characterise this population, as discrepant properties, from adipogenic to non- and anti-adipogenic, have been reported for these cells. To resolve these phenotypic ambiguities, we characterised mammalian subcutaneous CD142+ ASPCs across various experimental conditions, demonstrating that CD142+ ASPCs exhibit high molecular and phenotypic robustness. Specifically, we find these cells to be firmly non- and anti-adipogenic both in vitro and in vivo, with their inhibitory signals also impacting adipogenic human cells. However, these CD142+ ASPC-specific properties exhibit surprising temporal phenotypic alterations, and emerge only in an age-dependent manner. Finally, using multi-omic and functional assays, we show that the inhibitory nature of these adipogenesis-regulatory CD142+ ASPCs (Aregs) is driven by specifically expressed secretory factors that cooperate with the retinoic acid signalling pathway to transform the adipogenic state of CD142- ASPCs into a non-adipogenic, Areg-like state.


Asunto(s)
Adipogénesis , Tretinoina , Adipocitos/metabolismo , Tejido Adiposo , Anfirregulina/metabolismo , Animales , Diferenciación Celular , Humanos , Mamíferos , Transducción de Señal , Tretinoina/farmacología
2.
Cell Metab ; 36(7): 1566-1585.e9, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38729152

RESUMEN

Adipose tissue plasticity is orchestrated by molecularly and functionally diverse cells within the stromal vascular fraction (SVF). Although several mouse and human adipose SVF cellular subpopulations have by now been identified, we still lack an understanding of the cellular and functional variability of adipose stem and progenitor cell (ASPC) populations across human fat depots. To address this, we performed single-cell and bulk RNA sequencing (RNA-seq) analyses of >30 SVF/Lin- samples across four human adipose depots, revealing two ubiquitous human ASPC (hASPC) subpopulations with distinct proliferative and adipogenic properties but also depot- and BMI-dependent proportions. Furthermore, we identified an omental-specific, high IGFBP2-expressing stromal population that transitions between mesothelial and mesenchymal cell states and inhibits hASPC adipogenesis through IGFBP2 secretion. Our analyses highlight the molecular and cellular uniqueness of different adipose niches, while our discovery of an anti-adipogenic IGFBP2+ omental-specific population provides a new rationale for the biomedically relevant, limited adipogenic capacity of omental hASPCs.


Asunto(s)
Adipogénesis , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina , Epiplón , Células del Estroma , Humanos , Epiplón/metabolismo , Epiplón/citología , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Células del Estroma/metabolismo , Células del Estroma/citología , Femenino , Masculino , Persona de Mediana Edad , Tejido Adiposo/metabolismo , Tejido Adiposo/citología , Adulto , Epitelio/metabolismo , Células Madre/metabolismo , Células Madre/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Anciano , Animales
3.
Trends Cell Biol ; 30(12): 937-950, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33148396

RESUMEN

White adipose tissue (WAT) is a cellularly heterogeneous endocrine organ that not only serves as an energy reservoir, but also actively participates in metabolic homeostasis. Among the main constituents of adipose tissue are adipocytes, which arise from adipose stem and progenitor cells (ASPCs). While it is well known that these ASPCs reside in the stromal vascular fraction (SVF) of adipose tissue, their molecular heterogeneity and functional diversity is still poorly understood. Driven by the resolving power of single-cell transcriptomics, several recent studies provided new insights into the cellular complexity of ASPCs among different mammalian fat depots. In this review, we present current knowledge on ASPCs, their population structure, hierarchy, fat depot-specific nature, function, and regulatory mechanisms, and discuss not only the similarities, but also the differences between mouse and human ASPC biology.


Asunto(s)
Adipocitos/citología , Mamíferos/metabolismo , Células Madre/citología , Adipocitos/metabolismo , Adipogénesis , Animales , Humanos , Obesidad/patología , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda