Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Mar Drugs ; 19(10)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34677445

RESUMEN

Sugar-based molecules such as heparins or natural heparan sulfate polysaccharides have been developed and widely studied for controlling heparanase (HPSE) enzymatic activity, a key player in extracellular matrix remodelling during cancer pathogenesis. However, non-enzymatic functions of HPSE have also been described in tumour mechanisms. Given their versatile properties, we hypothesized that sugar-based inhibitors may interfere with enzymatic but also non-enzymatic HPSE activities. In this work, we assessed the effects of an original marine λ-carrageenan derived oligosaccharide (λ-CO) we previously described, along with those of its native counterpart and heparins, on cell viability, proliferation, migration, and invasion of MDA-MB-231 breast cancer cells but also of sh-MDA-MB-231 cells, in which the expression of HPSE was selectively downregulated. We observed no cytotoxic and no anti-proliferative effects of our compounds but surprisingly λ-CO was the most efficient to reduce cell migration and invasion compared with heparins, and in a HPSE-dependent manner. We provided evidence that λ-CO tightly controlled a HPSE/MMP-14/MMP-2 axis, leading to reduced MMP-2 activity. Altogether, this study highlights λ-CO as a potent HPSE "modulator" capable of reducing not only the enzymatic activity of HPSE but also the functions controlled by the HPSE levels.


Asunto(s)
Antineoplásicos/farmacología , Carragenina/farmacología , Línea Celular Tumoral/efectos de los fármacos , Glucuronidasa/metabolismo , Rhodophyta , Animales , Antineoplásicos/química , Organismos Acuáticos , Neoplasias de la Mama , Carragenina/química , Movimiento Celular/efectos de los fármacos , Femenino , Humanos , Concentración 50 Inhibidora , Metaloproteinasa 14 de la Matriz/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo
2.
EMBO J ; 35(4): 414-28, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26772186

RESUMEN

Extracellular pH variations are seen as the principal endogenous signal that triggers activation of Acid-Sensing Ion Channels (ASICs), which are basically considered as proton sensors, and are involved in various processes associated with tissue acidification. Here, we show that human painful inflammatory exudates, displaying non-acidic pH, induce a slow constitutive activation of human ASIC3 channels. This effect is largely driven by lipids, and we identify lysophosphatidylcholine (LPC) and arachidonic acid (AA) as endogenous activators of ASIC3 in the absence of any extracellular acidification. The combination of LPC and AA evokes robust depolarizing current in DRG neurons at physiological pH 7.4, increases nociceptive C-fiber firing, and induces pain behavior in rats, effects that are all prevented by ASIC3 blockers. Lipid-induced pain is also significantly reduced in ASIC3 knockout mice. These findings open new perspectives on the roles of ASIC3 in the absence of tissue pH variation, as well as on the contribution of those channels to lipid-mediated signaling.


Asunto(s)
Canales Iónicos Sensibles al Ácido/biosíntesis , Ácido Araquidónico/metabolismo , Lisofosfatidilcolinas/metabolismo , Nociceptores/fisiología , Animales , Línea Celular , Ganglios Espinales/citología , Humanos , Ratones Noqueados , Dolor , Ratas
3.
J Cell Sci ; 129(12): 2368-81, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27142833

RESUMEN

Saturated fatty acids (SFA), which are abundant in the so-called western diet, have been shown to efficiently incorporate within membrane phospholipids and therefore impact on organelle integrity and function in many cell types. In the present study, we have developed a yeast-based two-step assay and a virtual screening strategy to identify new drugs able to counter SFA-mediated lipointoxication. The compounds identified here were effective in relieving lipointoxication in mammalian ß-cells, one of the main targets of SFA toxicity in humans. In vitro reconstitutions and molecular dynamics simulations on bilayers revealed that these molecules, albeit according to different mechanisms, can generate voids at the membrane surface. The resulting surface defects correlate with the recruitment of loose lipid packing or void-sensing proteins required for vesicular budding, a central cellular process that is precluded under SFA accumulation. Taken together, the results presented here point at modulation of surface voids as a central parameter to consider in order to counter the impacts of SFA on cell function.


Asunto(s)
Membrana Celular/metabolismo , Lípidos/toxicidad , Saccharomyces cerevisiae/metabolismo , Membrana Celular/efectos de los fármacos , Diglicéridos/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Lisofosfolípidos/farmacología , Metaboloma/efectos de los fármacos , Metabolómica , Farmacogenética , Saccharomyces cerevisiae/efectos de los fármacos , Vías Secretoras/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Transcriptoma/genética , Interfaz Usuario-Computador
4.
Biochim Biophys Acta Mol Basis Dis ; 1864(9 Pt B): 3069-3084, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29960042

RESUMEN

Maintaining the equilibrium between saturated and unsaturated fatty acids within membrane phospholipids (PLs) is crucial to sustain the optimal membrane biophysical properties, compatible with selective organelle-based processes. Lipointoxication is a pathological condition under which saturated PLs tend to accumulate within the cell at the expense of unsaturated species, with major impacts on organelle function. Here, we show that human bronchial epithelial cells extracted from lungs of patients with Obstructive Pulmonary Diseases (OPDs), i. e. Cystic Fibrosis (CF) individuals and Smokers, display a characteristic lipointoxication signature, with excessive amounts of saturated PLs. Reconstitution of this signature in cellulo and in silico revealed that such an imbalance results in altered membrane properties and in a dramatic disorganization of the intracellular network of bronchial epithelial cells, in a process which can account for several OPD traits. Such features include Endoplasmic Reticulum-stress, constitutive IL8 secretion, bronchoconstriction and, ultimately, epithelial cell death by apoptosis. We also demonstrate that a recently-identified lipid-like molecule, which has been shown to behave as a "membrane-reshaper", counters all the lipointoxication hallmarks tested. Altogether, these insights highlight the modulation of membrane properties as a potential new strategy to heal and prevent highly detrimental symptoms associated with OPDs.


Asunto(s)
Membrana Celular/efectos de los fármacos , Fibrosis Quística/tratamiento farmacológico , Ácidos Grasos/metabolismo , Manitol/análogos & derivados , Ácidos Oléicos/farmacología , Fosfolípidos/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Adulto , Anciano , Bronquios/citología , Línea Celular , Membrana Celular/metabolismo , Membrana Celular/patología , Simulación por Computador , Fibrosis Quística/patología , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Ácidos Grasos/química , Femenino , Humanos , Masculino , Manitol/farmacología , Manitol/uso terapéutico , Persona de Mediana Edad , Simulación de Dinámica Molecular , Ácidos Oléicos/uso terapéutico , Fosfolípidos/química , Cultivo Primario de Células , Enfermedad Pulmonar Obstructiva Crónica/patología , Mucosa Respiratoria/citología
5.
Environ Sci Technol ; 51(9): 5172-5181, 2017 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-28345896

RESUMEN

Polyethylene (PE), one of the most prominent synthetic polymers used worldwide, is very poorly biodegradable in the natural environment. Consequently, PE represents by itself more than half of all plastic wastes. PE biodegradation is achieved through the combination of abiotic and biotic processes. Several microorganisms have been shown to grow on the surface of PE materials, among which are the species of the Rhodococcus genus, suggesting a potent ability of these microorganisms to use, at least partly, PE as a potent carbon source. However, most of them, if not all, fail to induce a clear-cut degradation of PE samples, showing that bottlenecks to reach optimal biodegradation clearly exist. To identify the pathways involved in PE consumption, we used in the present study a combination of RNA-sequencing and lipidomic strategies. We show that short-term exposure to various forms of PE, displaying different molecular weight distributions and oxidation levels, lead to an increase in the expression of 158 genes in a Rhodococcus representative, R. ruber. Interestingly, one of the most up-regulated pathways is related to alkane degradation and ß-oxidation of fatty acids. This approach also allowed us to identify metabolic limiting steps, which could be fruitfully targeted for optimized PE consumption by R. ruber.


Asunto(s)
Polietileno/metabolismo , Rhodococcus/metabolismo , Secuencia de Bases , Biodegradación Ambiental , Oxidación-Reducción
6.
J Pharmacol Exp Ther ; 350(3): 624-34, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24970923

RESUMEN

The mutated protein F508del-cystic fibrosis transmembrane conductance regulator (CFTR) failed to traffic properly as a result of its retention in the endoplasmic reticulum and functions as a chloride (Cl(-)) channel with abnormal gating and endocytosis. Small chemicals (called correctors) individually restore F508del-CFTR trafficking and Cl(-) transport function, but recent findings indicate that synergistic pharmacology should be considered to address CFTR defects more clearly. We studied the function and maturation of F508del-CFTR expressed in HeLa cells using a combination of five correctors [miglustat, IsoLAB (1,4-dideoxy-2-hydroxymethyl-1,4-imino-l-threitol), Corr4a (N-[2-(5-chloro-2-methoxy-phenylamino)-4'-methyl-[4,5']bithiazolyl-2'-yl]-benzamide), VX-809 [3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl)cyclopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid], and suberoylamilide hydroxamic acid (SAHA)]. Using the whole-cell patch-clamp technique, the current density recorded in response to CFTR activators (forskolin + genistein) was significantly increased in the presence of the following combinations: VX-809 + IsoLAB; VX-809 + miglustat + SAHA; VX-809 + miglustat + IsoLAB; VX-809 + IsoLAB + SAHA; VX-809 + miglustat + IsoLAB + SAHA. These combinations restored the activity of F508del-CFTR but with a differential effect on the appearance of mature c-band of F508del-CFTR proteins. Focusing on the VX-809 + IsoLAB cocktail, we recorded a level of correction higher at 37°C versus room temperature, but without amelioration of the thermal instability of CFTR. The level of functional rescue with VX-809 + IsoLAB after 4 hours of incubation was maximal and similar to that obtained in optimal conditions of use for each compound (i.e., 24 hours for VX-809 + 4 hours for IsoLAB). Finally, we compared the stimulation of F508del-CFTR by forskolin or forskolin + VX-770 [N-(2,4-di-tert-butyl-5-hydroxyphenyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide] with cells corrected by VX-809 + IsoLAB. Our results open new perspectives for the development of a synergistic polypharmacology to rescue F508del-CFTR and show the importance of temperature on the effect of correctors and on the level of correction, suggesting that optimized combination of correctors could lead to a better rescue of F508del-CFTR function.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/agonistas , Regulador de Conductancia de Transmembrana de Fibrosis Quística/fisiología , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/farmacología , Aminopiridinas/farmacología , Benzamidas/farmacología , Benzodioxoles/farmacología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Colforsina/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Células HeLa , Humanos , Tiazoles/farmacología
7.
Bull Cancer ; 2024 Mar 13.
Artículo en Francés | MEDLINE | ID: mdl-38485627

RESUMEN

Changing practices and the limited use of cord blood units as a source of cells for allogeneic hematopoietic stem cell transplants (HSC) led us to reconsider the recommendations established in 2011 and 2012, and to propose an update incorporating recent bibliographic data. If HLA compatibility was until now established at low resolution for HLA-A and B loci, and at high resolution for HLA-DRB1, the recent papers are converging towards an increase in the level of resolution, making way for a compatibility now defined in high resolution for all the considered loci, and the inclusion of the HLA-C locus, in order to establish a level of HLA compatibility on 8 alleles (HLA-A, B, C and DRB1). The CD34+ dose is a determining factor in hematopoietic reconstitution but it is not correlated with the total nucleated cells content. This is why we recommend taking these two data into account when choosing a cord blood unit. The recommendations established by our group are presented as a flow chart taking into account the characteristics of the underlying pathology (malignant or non-malignant), the cell dose and the HLA compatibility criteria, as well as criteria linked to the banks in which units are stored.

8.
Inflamm Bowel Dis ; 29(7): 1024-1037, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-36662167

RESUMEN

BACKGROUND: There is an unmet medical need for biomarkers that capture host and environmental contributions in inflammatory bowel diseases (IBDs). This study aimed at testing the potential of circulating lipids as disease classifiers given their major roles in inflammation. METHODS: We applied a previously validated comprehensive high-resolution liquid chromatography-mass spectrometry-based untargeted lipidomic workflow covering 25 lipid subclasses to serum samples from 100 Crohn's disease (CD) patients and 100 matched control subjects. Findings were replicated and expanded in another 200 CD patients and 200 control subjects. Key metabolites were tested for associations with disease behavior and location, and classification models were built and validated. Their association with disease activity was tested using an independent cohort of 42 CD patients. RESULTS: We identified >70 metabolites with strong association (P < 1 × 10-4, q < 5 × 10-4) to CD. Highly performing classification models (area under the curve > 0.84-0.97) could be built with as few as 5 to 9 different metabolites, representing 6 major correlated lipid clusters. These classifiers included a phosphatidylethanolamine ether (O-16:0/20:4), a sphingomyelin (d18:1/21:0) and a cholesterol ester (14:1), a very long-chain dicarboxylic acid [28:1(OH)] and sitosterol sulfate. These classifiers and correlated lipids indicate a dysregulated metabolism in host cells, notably in peroxisomes, as well as dysbiosis, oxidative stress, compromised inflammation resolution, or intestinal membrane integrity. A subset of these were associated with disease behavior or location. CONCLUSIONS: Untargeted lipidomic analyses uncovered perturbations in the circulating human CD lipidome, likely resulting from multiple pathogenic mechanisms. Models using as few as 5 biomarkers had strong disease classifier characteristics, supporting their potential use in diagnosis or prognosis.


This study reports a comprehensive untargeted lipidomic analysis of 600 serum samples from patients with Crohn's disease and matched control subjects, identified and replicated ~70 metabolites associated with Crohn's disease, and developed highly performing classification models (area under the curve > 0.84-0.97) with as few as 5 metabolites.


Asunto(s)
Enfermedad de Crohn , Humanos , Enfermedad de Crohn/patología , Lipidómica , Biomarcadores , Lípidos , Inflamación
9.
Dis Model Mech ; 13(6)2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32303571

RESUMEN

The balance within phospholipids (PLs) between saturated fatty acids and monounsaturated or polyunsaturated fatty acids is known to regulate the biophysical properties of cellular membranes. As a consequence, in many cell types, perturbing this balance alters crucial cellular processes, such as vesicular budding and the trafficking/function of membrane-anchored proteins. The worldwide spread of the Western diet, which is highly enriched in saturated fats, has been clearly correlated with the emergence of a complex syndrome known as metabolic syndrome (MetS). MetS is defined as a cluster of risk factors for cardiovascular diseases, type 2 diabetes and hepatic steatosis; however, no clear correlations have been established between diet-induced fatty acid redistribution within cellular PLs and the severity/chronology of the symptoms associated with MetS or the function of the targeted organs. To address this issue, in this study we analyzed PL remodeling in rats exposed to a high-fat/high-fructose diet (HFHF) over a 15-week period. PL remodeling was analyzed in several organs, including known MetS targets. We show that fatty acids from the diet can redistribute within PLs in a very selective manner, with phosphatidylcholine being the preferred sink for this redistribution. Moreover, in the HFHF rat model, most organs are protected from this redistribution, at least during the early onset of MetS, at the expense of the liver and skeletal muscles. Interestingly, such a redistribution correlates with clear-cut alterations in the function of these organs.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Ácidos Grasos/metabolismo , Síndrome Metabólico/metabolismo , Fosfolípidos/metabolismo , Animales , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Dieta Alta en Grasa , Azúcares de la Dieta , Modelos Animales de Enfermedad , Hígado Graso/etiología , Hígado Graso/metabolismo , Hígado Graso/patología , Fructosa , Lipidómica , Hígado/metabolismo , Hígado/patología , Masculino , Síndrome Metabólico/etiología , Síndrome Metabólico/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Miocardio/metabolismo , Miocardio/patología , Ratas Wistar , Factores de Tiempo
10.
PLoS One ; 10(3): e0118943, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25768293

RESUMEN

Cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel that is expressed on the apical plasma membrane (PM) of epithelial cells. The most common deleterious allele encodes a trafficking-defective mutant protein undergoing endoplasmic reticulum-associated degradation (ERAD) and presenting lower PM stability. In this study, we investigated the involvement of the Cdc42 pathway in CFTR turnover and trafficking in a human bronchiolar epithelial cell line (CFBE41o-) expressing wild-type CFTR. Cdc42 is a small GTPase of the Rho family that fulfils numerous cell functions, one of which is endocytosis and recycling process via actin cytoskeleton remodelling. When we treated cells with chemical inhibitors such as ML141 against Cdc42 and wiskostatin against the downstream effector N-WASP, we observed that CFTR channel activity was inhibited, in correlation with a decrease in CFTR amount at the cell surface and an increase in dynamin-dependent CFTR endocytosis. Anchoring of CFTR to the cortical cytoskeleton was then presumably impaired by actin disorganization. When we performed siRNA-mediated depletion of Cdc42, actin polymerization was not impacted, but we observed actin-independent consequences upon CFTR. Total and PM CFTR amounts were increased, resulting in greater activation of CFTR. Pulse-chase experiments showed that while CFTR degradation was slowed, CFTR maturation through the Golgi apparatus remained unaffected. In addition, we observed increased stability of CFTR in PM and reduction of its endocytosis. This study highlights the involvement of the Cdc42 pathway at several levels of CFTR biogenesis and trafficking: (i) Cdc42 is implicated in the first steps of CFTR biosynthesis and processing; (ii) it contributes to the stability of CFTR in PM via its anchoring to cortical actin; (iii) it promotes CFTR endocytosis and presumably its sorting toward lysosomal degradation.


Asunto(s)
Membrana Celular/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Sistema Respiratorio/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína de Unión al GTP cdc42/metabolismo , Citoesqueleto de Actina/metabolismo , Carbazoles/farmacología , Línea Celular , Corteza Cerebral/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Dinamina II/metabolismo , Endocitosis , Inhibidores Enzimáticos/farmacología , Células Epiteliales/metabolismo , Humanos , Propanolaminas/farmacología , Estabilidad Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Pirazoles/farmacología , ARN Interferente Pequeño/metabolismo , Sistema Respiratorio/ultraestructura , Sulfonamidas/farmacología , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo , Proteína de Unión al GTP cdc42/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda