Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Molecules ; 29(7)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38611862

RESUMEN

The current research is an attempt to analyze on-site selenium(IV) ions in environmental water samples using an eco-friendly miniaturized sensor developed by deposition of a very thin amount of metallic bismuth in a solid Bi electrode tightly closed in miniaturized housing. Numerous experimental variables are optimized, including the composition of the supporting electrolyte and its pH, as well as activation and accumulation conditions. Under optimized measurement conditions, the method shows high sensitivity, permitting a very low limit of detection equal to 7 × 10-10 mol L-1 to be achieved in a short accumulation time of 50 s. The performance of this microsensor was investigated against numerous interference factors and its good anti-interference capability was demonstrated. A series of voltammetric experiments by differential pulse cathodic stripping voltammetry (DPCSV) were carried out and they proved that the miniaturized sensor is characterized by very good accuracy and precision as well as long-term stability. The solid bismuth microelectrode displays a good voltammetric response in the analysis of diverse samples with a complex matrix and demonstrates a good recovery rate.

2.
Molecules ; 29(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38542835

RESUMEN

A simple and fast stripping voltammetric procedure for trace determination of Ce(III) in environmental water samples has been developed. The procedure of cerium determination in the presence of Alizarin S and acetate buffer was employed as the initial method. The adsorption material, multi-walled carbon nanotubes, was used as a screen-printed electrode modifier ensuring efficient accumulation of the Ce(III)-Alizarin S complex. The calibration graph for Ce(III) for an accumulation time of 60 s was linear in the range from 1 × 10-8 to 7 × 10-7 mol L-1 with the linear correlation coefficient r = 0.997. The detection limit was estimated from three times the standard deviation of low Ce(III) concentration and an accumulation time of 60 s was about 3.5 × 10-9 mol L-1. The proposed method was successfully applied to Ce(III) determination at trace levels in environmental water samples, such as river, lake and rain water with recoveries ranged from 93% to 98%.

3.
Molecules ; 28(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38067485

RESUMEN

This paper presents an overview of approaches proposed in the scientific literature for the voltammetric determination of rare earth elements (mainly cerium and europium individually, as well as various lanthanides simultaneously) in manifold kinds of samples. The work is divided into chapters describing the most important aspects affecting the sensitivity of the proposed methods: the technique adopted (AdSV, ASV, CSV), complexing agents used, the kind of working electrode (mercury-based, noble metal or carbon electrodes) and the most popular electrode modifiers (e.g., metal film, carbon nanotubes, molecularly imprinted polymers). Analytical parameters of the procedures presented in the paper are collected in tables. The subsequent chapters are devoted to a detailed discussion of potential inorganic and organic interfering factors. The possibilities of simultaneous determination of several lanthanides in one sample and the influence of other lanthanides on the determined rare earth element were also discussed. Finally, the applications of the voltammetric procedures to the determination of rare earth metals in real samples with miscellaneous matrix is described. All analytical results were tabulated in order to compare the analytical suitability of the proposed procedures.

4.
Materials (Basel) ; 17(4)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38399216

RESUMEN

This work presents a proposal for an adsorptive stripping voltammetric (AdSV) method for gallium(III) determination at an eco-friendly multiwall carbon nanotube/spherical glassy carbon (MWCNT/SGC) electrode modified with a lead film. The operational factors influencing the sensitivity of the AdSV procedure were thoroughly investigated, and their most favorable values were chosen (0.1 mol L-1 acetate buffer solution pH = 5.6; 7 × 10-5 mol L-1 Pb(II); 2 × 10-4 mol L-1 cupferron; potential/time of lead film formation: -1.9 V/30 s; potential/time of Ga(III)-cupferron adsorption: -0.75 V/30 s). The newly developed MWCNT/SGCE has proven to be a competitive substrate to the glassy carbon electrode to create a lead film electrode, since it allows the determination of gallium in a wider range of concentrations from 3 × 10-9 to 4 × 10-7 mol L-1 with a lower limit of detection equal to 9.5 × 10-10 mol L-1. The elaborated procedure has been shown to be highly selective and insensitive to the presence of an even 100-fold excess of most of the ions commonly found in environmental waters. The MWCNT/SGC sensor, which can maintain >95% of its original response after 70 days of use, has been successfully applied for the detection of gallium in water samples with the relative standard deviation (RSD) ranging from 4.5% to 6.2% (n = 3) and recoveries in the range from 95.3% to 104.9%.

5.
Materials (Basel) ; 16(24)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38138688

RESUMEN

Tin determination allows for the monitoring of pollution and assessment of the impact of human activities on the environment. The determination of tin in the environment is crucial for the protection of human health and ecosystems, and for maintaining sustainability. Tin can be released into the environment from various sources, such as industry, transportation, and electronic waste. The concentration of tin in the environment can be determined by different analytical methods, depending on the form of tin present and the purpose of the analysis. The choice of an appropriate method depends on the type of sample, concentration levels, and the available instrumentation. In this paper, we have carried out a literature review of electrochemical methods for the determination of tin. Electrochemical methods of analysis such as polarography, voltammetry, and potentiometry can be used for the determination of tin in various environmental samples, as well as in metal alloys. The detection limits and linearity ranges obtained for the determination of tin by different electrochemical techniques are collected and presented. The influence of the choice of base electrolyte and working electrode on signals is also presented. Practical applications of the developed tin determination methods in analyzing real samples are also summarized.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda