Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Appl Microbiol Biotechnol ; 107(5-6): 1875-1886, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36773061

RESUMEN

Milk is one of the most nutritionally complete foods and plays an important role in the human diet. Buffalo milk represents 15% of worldwide milk production and is an important source of bioactive compounds. Buffalo milk has a great market in the Mediterranean area, and dairy products, such as Mozzarella and Ricotta di Bufala Campana, obtained with the Italian Mediterranean buffalo milk, are acknowledged with the Protected Designation of Origin (PDO). This study aimed to characterize, using high-throughput sequencing of the 16S rRNA gene, the milk core microbiome of water buffalo rises in the Amaseno Valley included in the Mozzarella PDO region. The principal features of the core and the auxiliary buffalo milk microbiome are the predominance of Firmicutes and Lactococcus, one of the most important lactic acid bacteria (LAB) taxa in the dairy industry. The comparative analysis of the core microbiomes indicated that the milk of the Italian Mediterranean Buffalo and other mammals share the presence of Streptococcus-affiliated OTUs (operational taxonomic units). Our data also demonstrated that the core microbiome of milk samples collected from PDO and non-PDO regions differ in the number and type of taxa. KEY POINTS: • Buffalo milk and their derivate products are becoming more popular worldwide. • Dairy locations and practice management affect the structure of the milk microbiota. • Next-generation sequencing (NGS) analysis allows to identify the features of the Italian Buffalo milk microbiome.


Asunto(s)
Queso , Leche , Animales , Humanos , Leche/microbiología , Búfalos , ARN Ribosómico 16S , Italia , Queso/análisis
2.
Mycorrhiza ; 30(1): 133-147, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31823026

RESUMEN

The ability of plants to take up phosphorus (P) from soil depends on root morphology and root exudates release and can be modulated by beneficial soil microbes. These microbes can solubilize P, affect root elongation and branching, and lead to a higher uptake of P and other nutrients. However, coordination of these mechanisms is unclear, especially the mechanism for changing the available form of P. We aimed to dissect the effects of two different beneficial microbial taxa (plant growth-promoting bacteria (PGPB) and arbuscular mycorrhizal fungi (AMF)) on root morphological traits, plant nutrient content, and growth in tomato and corn fertilized with either Gafsa rock phosphate (RP) or triple superphosphate (TSP), which have contrasting solubility levels. Tomato and corn were grown in pots and inoculated with one of three PGPB species or a mix of two AMF species or were not inoculated. Root traits, botanical fractions, and the contents of various mineral nutrients were measured. TSP stimulated tomato biomass accumulation compared to RP but did not stimulate corn biomass accumulation. PGPB improved the growth of both plant species under RP, with limited differences among the strains, whereas AMF only improved tomato growth under TSP. These differences between microbial systems were explained by a bacterial effect on the total root length but not on the mean root diameter and by the ability of AMF to improve the mineral nutrient content. The effects of PGPB were less dependent on the plant species and on P form than the effects of AMF.These results have implications for the improvement of the early plant growth through the management of beneficial microbes.


Asunto(s)
Micorrizas , Solanum lycopersicum , Bacterias , Fósforo , Raíces de Plantas , Túnez , Zea mays
3.
Front Plant Sci ; 14: 1332864, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38328622

RESUMEN

Many recent studies have highlighted the importance of plant growth-promoting (rhizo)bacteria (PGPR) in supporting plant's development, particularly under biotic and abiotic stress. Most focus on the plant growth-promoting traits of selected strains and the latter's effect on plant biomass, root architecture, leaf area, and specific metabolite accumulation. Regarding energy balance, plant growth is the outcome of an input (photosynthesis) and several outputs (i.e., respiration, exudation, shedding, and herbivory), frequently neglected in classical studies on PGPR-plant interaction. Here, we discuss the primary evidence underlying the modifications triggered by PGPR and their metabolites on the plant ecophysiology. We propose to detect PGPR-induced variations in the photosynthetic activity using leaf gas exchange and recommend setting up the correct timing for monitoring plant responses according to the specific objectives of the experiment. This research identifies the challenges and tries to provide future directions to scientists working on PGPR-plant interactions to exploit the potential of microorganisms' application in improving plant value.

4.
Front Microbiol ; 14: 1022248, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36970660

RESUMEN

Introduction: The fermentative production of auxin/indole 3-acetate (IAA) using selected Pantoea agglomerans strains can be a promising approach to developing novel plant biostimulants for agriculture use. Methods: By integrating metabolomics and fermentation technologies, this study aimed to define the optimal culture conditions to obtain auxin/IAA-enriched plant postbiotics using P. agglomerans strain C1. Metabolomics analysis allowed us to demonstrate that the production of a selected. Results and discussion: Array of compounds with plant growth-promoting- (IAA and hypoxanthine) and biocontrol activity (NS-5, cyclohexanone, homo-L-arginine, methyl hexadecenoic acid, and indole-3-carbinol) can be stimulated by cultivating this strain on minimal saline medium amended with sucrose as a carbon source. We applied a three-level-two-factor central composite design (CCD) based response surface methodology (RSM) to explore the impact of the independent variables (rotation speed and medium liquid-to-flask volume ratio) on the production of IAA and IAA precursors. The ANOVA component of the CCD indicated that all the process-independent variables investigated significantly impacted the auxin/IAA production by P. agglomerans strain C1. The optimum values of variables were a rotation speed of 180 rpm and a medium liquid-to-flask volume ratio of 1:10. Using the CCD-RSM method, we obtained a maximum indole auxin production of 208.3 ± 0.4 mg IAAequ/L, which was a 40% increase compared to the growth conditions used in previous studies. Targeted metabolomics allowed us to demonstrate that the IAA product selectivity and the accumulation of the IAA precursor indole-3-pyruvic acid were significantly affected by the increase in the rotation speed and the aeration efficiency.

5.
Front Plant Sci ; 14: 1251544, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37900743

RESUMEN

Fruit and vegetables hold a prominent place in dietary guidance worldwide and, following the increasing awareness of the importance of their consumption for health, their demand has been on the rise. Fruit and vegetable production needs to be reconsidered so that it can be productive and, meantime, sustainable, resilient, and can deliver healthy and nutritious diets. Microbial plant biostimulants (PBs) are a possible approach to pursuing global food security and agricultural sustainability, and their application emerged as a promising alternative or substitute to the use of agrochemicals (e.g., more efficient use of mineral and organic fertilizers or less demand and more efficient use of pesticides in integrated production systems) and as a new frontier of investigation. To the best of our knowledge, no comprehensive reviews are currently available on the effects that microbial plant biostimulants' application can have specifically on each horticultural crop. This study thus aimed to provide a state-of-the-art overview of the effects that PBs can have on the morpho-anatomical, biochemical, physiological, and functional traits of the most studied crops. It emerged that most experiments occurred under greenhouse conditions; only a few field trials were carried out. Tomato, lettuce, and basil crops have been primarily treated with Arbuscular Mycorrhizal Fungi (AMF), while plant grow-promoting rhizobacteria (PGPR) metabolites were used for crops, such as strawberries and cucumbers. The literature review also pointed out that crop response to PBs is never univocal. Complex mechanisms related to the PB type, the strain, and the crop botanical family, occur.

6.
Planta ; 234(4): 723-35, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21617989

RESUMEN

A novel chymotrypsin inhibitor, detected in the endosperm of Triticum aestivum, was purified and characterized with respect to the main physical-chemical properties. On the basis of its specificity, this inhibitor was named WCI (wheat chymotrypsin inhibitor). WCI is a monomeric neutral protein made up of 119 residues and molecular mass value of 12,933.40 Da. Automated sequence and mass spectrometry analyses, carried out on several samples of purified inhibitor, evidenced an intrinsic molecular heterogeneity due to the presence of the isoform [des-(Thr)WCI], accounting for about 40% of the total sample. In vitro, WCI acted as a strong inhibitor of bovine pancreatic chymotrypsin as well as of chymotryptic-like activities isolated from the midgut of two phytophagous insects, Helicoverpa armigera (Hüb.) and Tenebrio molitor L., respectively. No inhibitory activities were detected against bacterial subtilisins, bovine pancreatic trypsin, porcine pancreatic elastase or human leukocyte elastase. The primary structure of WCI was significantly similar (45.7-89.1%) to those of several proteins belonging to the cereal trypsin/α-amylase inhibitor super-family and showed the typical sequence motif of this crowed protein group. The cDNA of the inhibitor (wci-cDNA) was isolated from wheat immature caryopses and employed to obtain a recombinant product in E. coli. Experimental evidences indicated that the recombinant inhibitor was localized in the inclusion bodies from which it was recovered as soluble and partially active protein by applying an appropriate refolding procedure. WCI reactive site localization, as well as its inhibitory specificity, was investigated by molecular modeling approach.


Asunto(s)
Quimotripsina/antagonistas & inhibidores , Proteínas de Plantas/química , Inhibidores de Proteasas/química , Triticum/química , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Bovinos , Secuencia de Consenso , ADN Complementario/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Insectos/enzimología , Modelos Moleculares , Datos de Secuencia Molecular , Peso Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Inhibidores de Proteasas/aislamiento & purificación , Inhibidores de Proteasas/metabolismo , ARN Mensajero/genética , ARN de Planta/genética , Sensibilidad y Especificidad , Alineación de Secuencia , Análisis de Secuencia de Proteína , Triticum/metabolismo
7.
Fish Shellfish Immunol ; 30(3): 773-82, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21220030

RESUMEN

All jawed vertebrates share lymphocyte receptors that allow the recognition of pathogens and the discrimination between self and non-self antigens. The T cell transmembrane receptor (TcR) has a central role in the maturation and function of T lymphocytes in vertebrates via an important role in positive selection of the variable region of TcR αß/γδ chains. In this study, the TcRß transcript expression and TcRß(+) cell distribution during the ontogeny of the immune system of sea bass (Dicentrarchus labrax, L.) were analysed. RT-PCR analysis of larvae during early development demonstrated that the ß chain transcript is expressed by 19 days post-fertilisation (p.f.). RNA probes specific for the ß chain were synthesised and used for in situ hybridisation experiments on 30 day p.f. to 180 day old juvenile larvae. A parallel immunohistochemical study was performed using the anti-T cell monoclonal antibody DLT15 developed in our laboratory [Scapigliati et al., Fish Shellfish Immunol 1996; 6:383-401]. The first thymus anlage was detectable at 32-33 days p.f. (Corresponding to about 27 days post-hatch). DLT15(+) cells were detected at day 35 p.f. in the thymus whereas TcRß(+) cells were recognisable at day 38 p.f. in the thymus and at day 41 p.f. in the gut. TcRß(+) cells were observed in capillaries from 41 to 80 days p.f. At day 46 p.f., TcRß(+) cells were identified in the head kidney and were detected in the spleen 4 days later. The present results demonstrate that TcRß(+) cells can be differentiated first in the thymus and then in other organs/tissues, suggesting potential TcRß(+) cell colonisation from the thymus to the middle gut. Once the epithelial architecture of the thymus is completed with the formation of the cortical-medullary border (around 70-75 days p.f.), DLT15(+) cells or TcRß(+) cells are confined mainly to the cortex and cortical-medullary border. In particular, a large influx of TcRß(+) cells was observed at the cortical-medullary border from 72 to 90 days p.f., suggesting a role in positive selection for this thymic region during the ontogeny of the fish immune system. This study provides novel information about the primary differentiation and distribution of TcRß(+) cells in sea bass larvae and juveniles.


Asunto(s)
Lubina/inmunología , Diferenciación Celular , Linfocitos T/citología , Linfocitos T/metabolismo , Timo/citología , Animales , Tejido Linfoide/citología , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
8.
Microorganisms ; 8(2)2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-31979031

RESUMEN

Distinctive strains of Pantoea are used as soil inoculants for their ability to promote plant growth. Pantoea agglomerans strain C1, previously isolated from the phyllosphere of lettuce, can produce indole-3-acetic acid (IAA), solubilize phosphate, and inhibit plant pathogens, such as Erwinia amylovora. In this paper, the complete genome sequence of strain C1 is reported. In addition, experimental evidence is provided on how the strain tolerates arsenate As (V) up to 100 mM, and on how secreted metabolites like IAA and siderophores act as biostimulants in tomato cuttings. The strain has a circular chromosome and two prophages for a total genome of 4,846,925-bp, with a DNA G+C content of 55.2%. Genes related to plant growth promotion and biocontrol activity, such as those associated with IAA and spermidine synthesis, solubilization of inorganic phosphate, acquisition of ferrous iron, and production of volatile organic compounds, siderophores and GABA, were found in the genome of strain C1. Genome analysis also provided better understanding of the mechanisms underlying strain resistance to multiple toxic heavy metals and transmission of these genes by horizontal gene transfer. Findings suggested that strain C1 exhibits high biotechnological potential as plant growth-promoting bacterium in heavy metal polluted soils.

9.
Front Microbiol ; 11: 539359, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33162945

RESUMEN

Strains belonging to Pantoea agglomerans species are known for their ability to produce metabolites that can act in synergy with auxins to induce the adventitious root (AR) formation. The latter is critically important in the agamic propagation of several woody species, including pear (Pyrus communis L.), playing a considerable role in the commercial nursery farms including those using micropropagation techniques. When grown on a medium amended with tryptophan, the plant-growth-promoting (PGP) strain P. agglomerans C1 produces a cocktail of auxin and auxin-like molecules that can be utilized as biostimulants to improve the rooting of vegetable (Solanum lycopersicum L.) and woody crop species (Prunus rootstock GF/677 and hazelnut). In this study, we evaluated the morphological and molecular responses induced by strain C1 exometabolites in microcuttings of P. communis L. cv Dar Gazi and the potential benefits arising from their application. Results showed that exometabolites by P. agglomerans C1 induced a direct and earlier emergence of roots from stem tissues and determined modifications of root morphological parameters and root architecture compared to plants treated with the synthetic hormone indole-3-butyric acid (IBA). Transcription analysis revealed differences in the temporal expression pattern of ARF17 gene when IBA and C1 exometabolites were used alone, while together they also determined changes in the expression pattern of other key auxin-regulated plant genes. These results suggest that the phenotypic and molecular changes triggered by P. agglomerans C1 are dependent on different stimulatory and inhibitory effects that auxin-like molecules and other metabolites secreted by this strain have on the gene regulatory network of the plant. This evidence supports the hypothesis that the strategies used to harness the metabolic potential of PGP bacteria are key factors in obtaining novel biostimulants for sustainable agriculture. Our results demonstrate that metabolites secreted by strain C1 can be successfully used to increase the efficiency of micropropagation of pear through tissue culture techniques.

10.
Front Microbiol ; 11: 1475, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32765438

RESUMEN

The species Pantoea agglomerans includes strains that are agronomically relevant for their growth-promoting or biocontrol traits. Molecular analysis demonstrated that the IPDC pathway involved in the conversion of tryptophan (Trp) to indole-3-acetic acid (IAA) is highly conserved among P. agglomerans strains at both gene and protein levels. Results also indicated that the promoter region controlling the inducible expression of ipdC gene differs from the model system Enterobacter cloacae, which is in accordance with the observation that P. agglomerans accumulates higher levels of IAA when cells are collected in the exponential phase of growth. To assess the potential applications of these microorganisms for IAA production, P. agglomerans C1, an efficient auxin-producer strain, was cultivated in 5 L fermenter so as to evaluate the effect of the medium formulation, the physiological state of the cells, and the induction timing on the volumetric productivity. Results demonstrated that higher IAA levels were obtained by using a saline medium amended with yeast extract and saccharose and by providing Trp, which acts both as a precursor and an inducer, to a culture in the exponential phase of growth. Untargeted metabolomic analysis revealed a significant effect of the carbon source on the exometabolome profile relative to IAA-related compounds and other plant bioactive signaling molecules. The IAA-enriched metabolites secreted in the culture medium by P. agglomerans C1 were used as plant biostimulants to run a series of trials at a large-scale nursery farm. Tests were carried out with in vitro and ex vitro systems following the regular protocols used for large-scale plant tree agamic propagation. Results obtained with 4,540 microcuttings of Prunus rootstock GF/677 and 1,080 plantlets of Corylus avellana L. showed that metabolites from strain C1 improved percentage of rooted-explant, number of adventitious root formation, plant survival, and quality of plant as vigor, with an increase in the leaf area between 17.5 and 42.7% compared to IBA-K (indole-3-butyric acid potassium salt)-treated plants.

11.
Artículo en Inglés | MEDLINE | ID: mdl-31681753

RESUMEN

The rising demand of bio-vanillin and the possibility to use microbial biotransformation to produce this compound from agroindustrial byproducts are economically attractive. However, there are still several bottlenecks, including substrate and product toxicity, formation of undesired products and genetic stability of the recombinant strains, that impede an efficient use of recombinant Escherichia coli strains to make the whole process cost effective. To overcome these problems, we developed a new E. coli strain, named FR13, carrying the Pseudomonas genes encoding feruloyl-CoA synthetase and feruloyl-CoA hydratase/aldolase integrated into the chromosome and, using resting cells, we demonstrated that the vanillin yield and selectivity were strongly affected by the physiological state of the cells, the temperature used for the growth and the recovery of the biomass and the composition and pH of the bioconversion buffer. The substrate consumption rate and the vanillin yield increased using a sodium/potassium phosphate buffer at pH 9.0 as bioconversion medium. Optimization of the bioprocess variables, using response surface methodology, together with the use of a two-phase (solid-liquid) system for the controlled release of ferulic acid allowed us to increase the vanillin yield up to 28.10 ± 0.05 mM. These findings showed that recombinant plasmid-free E. coli strains are promising candidates for the production of vanillin at industrial scale and that a reduction of the cost of the bioconversion process requires approaches that minimize the toxicity of both ferulic acid and vanillin.

12.
Microbiol Resour Announc ; 8(44)2019 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-31672740

RESUMEN

Pantoea agglomerans strain C1 has plant growth-promoting (PGP) traits and exhibits antimicrobial activity. The genome comprises 4.8 Mb, 4,696 protein-coding sequences, and a G+C content of 55.2%.

13.
Front Plant Sci ; 10: 60, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30804958

RESUMEN

Many studies on plant biostimulants and organic fertilizers have been focused on the ability of these products to increase crop productivity and ameliorate crop tolerance to abiotic stresses. However, little information is available on their effect on plant microbiota, whereas it is well known that microorganisms associated with plant play crucial roles on the health and productivity of their host. The aim of this study was to evaluate the effect of a vegetal-derived protein hydrolysate (PH), a vegetal-derived PH enriched with copper (Cu-PH), and a tropical plant extract enriched with micronutrients (PE) on shoot growth and the epiphytic bacterial population of lettuce plants and the ability of these products to enhance the growth of beneficial or harmful bacteria. The three plant-derived products enhanced shoot biomass of lettuce plants indicating a biostimulant effect of the products. Data obtained using culture-independent (Terminal Restriction Fragment Length Polymorphism and Next Generation Sequencing) and culture-dependent approaches indicated that foliar application of commercial products altered the composition of the microbial population and stimulated the growth of specific bacteria belonging to Pantoea, Pseudomonas, Acinetobacter, and Bacillus genus. Data presented in this work demonstrated that some of these strains exhibited potential plant growth-promoting properties and/or biocontrol activity against fungi and bacteria phytopathogens including Fusarium, Trichoderma, and Erwinia species. No indication of potential health risks associated to the enrichment of human or plant bacterial pathogens emerged by the analysis of the microbiota of treated and no-treated plants. Overall, the findings presented in this study indicate that the commercial organic-based products can enhance the growth of beneficial bacteria occurring in the plant microbiota and signals produced by these bacteria can act synergistically with the organic compounds to enhance plant growth and productivity.

14.
Nutrients ; 11(5)2019 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-31137859

RESUMEN

Fermented foods have long been produced according to knowledge passed down from generation to generation and with no understanding of the potential role of the microorganism(s) involved in the process. However, the scientific and technological revolution in Western countries made fermentation turn from a household to a controlled process suitable for industrial scale production systems intended for the mass marketplace. The aim of this paper is to provide an up-to-date review of the latest studies which investigated the health-promoting components forming upon fermentation of the main food matrices, in order to contribute to understanding their important role in healthy diets and relevance in national dietary recommendations worldwide. Formation of antioxidant, bioactive, anti-hypertensive, anti-diabetic, and FODMAP-reducing components in fermented foods are mainly presented and discussed. Fermentation was found to increase antioxidant activity of milks, cereals, fruit and vegetables, meat and fish. Anti-hypertensive peptides are detected in fermented milk and cereals. Changes in vitamin content are mainly observed in fermented milk and fruits. Fermented milk and fruit juice were found to have probiotic activity. Other effects such as anti-diabetic properties, FODMAP reduction, and changes in fatty acid profile are peculiar of specific food categories.


Asunto(s)
Dieta Saludable , Fermentación , Alimentos Fermentados/microbiología , Promoción de la Salud , Valor Nutritivo , Microbiología de Alimentos , Humanos , Estado Nutricional , Ingesta Diaria Recomendada , Conducta de Reducción del Riesgo
15.
Mol Biosyst ; 8(12): 3335-43, 2012 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-23090387

RESUMEN

WSCI (Wheat Subtilisin/Chymotrypsin Inhibitor) is a small protein belonging to the Potato inhibitor I family exhibiting a high content of essential amino acid. In addition to bacterial subtilisins and mammalian chymotrypsins, WSCI inhibits chymotrypsin-like activities isolated from digestive traits of a number of insect larvae. In vivo, as suggested for many plant proteinase inhibitors, WSCI seems to play a role of natural defence against attacks of pests and pathogens. The functional region of WSCI, containing the inhibitor reactive site (Met48-Glu49), corresponds to an extended flexible loop (Val42-Asp53) whose architecture is somehow stabilized by a number of secondary interactions established with a small ß-sheet located underneath. The aim of this study was to employ a WSCI molecule as a stable scaffold to obtain recombinant inhibitors with new acquired anti-proteinase activity or, alternatively, inactive WSCI variants. A gene sequence coding for the native WSCI, along with genes coding for muteins with different specficities, could be exploited to obtain transformed non-food use plants with improved insect resistance. On the other hand, the genetic transformation of cereal plants over-expressing inactive WSCI muteins could represent a possible strategy to improve the nutritional quality of cereal-based foods, without risk of interference with human or animal digestive enzymes. Here, we described the characterization of four muteins containing single/multiple amino acid substitutions at the WSCI reactive site and/or at its proximity. Modalities of interaction of these muteins with proteinases (subtilisin, trypsin and chymotrypsin) were investigated by time course hydrolysis and molecular simulations studies.


Asunto(s)
Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Ingeniería de Proteínas , Inhibidores de Serina Proteinasa/química , Inhibidores de Serina Proteinasa/metabolismo , Triticum/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Dominio Catalítico , Quimotripsina/antagonistas & inhibidores , Humanos , Elastasa de Leucocito/antagonistas & inhibidores , Elastasa Pancreática/antagonistas & inhibidores , Proteínas de Plantas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Inhibidores de Serina Proteinasa/farmacología , Inhibidores de Tripsina/análisis
16.
J Biotechnol ; 156(4): 309-16, 2011 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-21875627

RESUMEN

Vanillin is one of the most important flavors in the food industry and there is great interest in its production through biotechnological processes starting from natural substrates such as ferulic acid. Among bacteria, recombinant Escherichia coli strains are the most efficient vanillin producers, whereas Pseudomonas spp. strains, although possessing a broader metabolic versatility, rapidly metabolize various phenolic compounds including vanillin. In order to develop a robust Pseudomonas strain that can produce vanillin in high yields and at high productivity, the vanillin dehydrogenase (vdh)-encoding gene of Pseudomonas fluorescens BF13 strain was inactivated via targeted mutagenesis. The results demonstrated that engineered derivatives of strain BF13 accumulate vanillin if inactivation of vdh is associated with concurrent expression of structural genes for feruloyl-CoA synthetase (fcs) and hydratase/aldolase (ech) from a low-copy plasmid. The conversion of ferulic acid to vanillin was enhanced by optimization of growth conditions, growth phase and parameters of the bioconversion process. The developed strain produced up to 8.41 mM vanillin, which is the highest final titer of vanillin produced by a Pseudomonas strain to date and opens new perspectives in the use of bacterial biocatalysts for biotechnological production of vanillin from agro-industrial wastes which contain ferulic acid.


Asunto(s)
Benzaldehídos/metabolismo , Ácidos Cumáricos/metabolismo , Ingeniería Metabólica/métodos , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Proteínas Bacterianas , Biomasa , Clonación Molecular , Fermentación , Concentración de Iones de Hidrógeno , Mutagénesis , Pseudomonas fluorescens/enzimología
17.
Biochimie ; 91(9): 1112-22, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19500644

RESUMEN

A site-directed mutagenesis strategy was employed to obtain four mutants of wheat subtilisin/chymotrypsin inhibitor (WSCI), with the aim to produce inactive forms of this protein. The mutants were expressed in Escherichia coli as fusion proteins and, after the tag removal, were purified to homogeneity. Three mutants, containing a single mutation at the sequence positions 49 or 50, were named E49S, E49P and Y50G, respectively. These mutants exhibited anti-subtilisin activities comparable to that of the wild type protein; instead, anti-chymotrypsin activity was detectable only for the mutant E49S. A fourth mutant (M48P-E49G), containing a double amino acid substitution at the inhibitor reactive site (P1-P1'), was inactive against both subtilisin and chymotrypsin. In order to investigate the interactions between the putative susceptible enzymes and the mutated forms of WSCI, we performed time-course hydrolysis experiments by incubating samples of the mutants with subtilisin-agarose and chymotrypsin-agarose, respectively. These experiments yielded information on the E/I complex formation, as well as on the timing of the cleavage pattern of some of these mutants. Molecular modeling studies were carried out with the 3D models of the mutants and of their putative complexes with subtilisin and chymotrypsin. In terms of inter- and intra-chain H-bond networks, the observations made for each theoretical E/I complex were found to be fully coherent with experimental data (kinetic and time-course hydrolysis) and supplied specific modalities of interaction of each mutant with the enzyme counterpart.


Asunto(s)
Cromatografía de Afinidad/métodos , Simulación por Computador , Modelos Moleculares , Mutagénesis Sitio-Dirigida/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Triticum/metabolismo , Secuencia de Aminoácidos , Electroforesis en Gel de Poliacrilamida , Datos de Secuencia Molecular , Proteínas de Plantas/química , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Triticum/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda