Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Emerg Microbes Infect ; 13(1): 2362941, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38813649

RESUMEN

Chikungunya virus (CHIKV) has emerged as a significant public health concern due to its rapid spread and potential for causing debilitating epidemics. In Argentina, the virus has garnered attention since its introduction to the Americas in 2013, due to its growing incidence and impact in neighbouring countries. Here we present a comprehensive analysis of the spatiotemporal dynamics of CHIKV in Argentina, focusing on the evolutionary trajectory of its genetic variants. Through a combination of active surveillance, screening of historical and recent samples, and whole-genome sequencing, we traced the evolutionary history of CHIKV lineages circulating within the country. Our results reveal that two distinct genotypes circulated in Argentina: The Asian lineage during the 2016 epidemic and the ECSA lineage in 2023. This distribution reflects the dominance of particular variants across Latin America. Since 2023, the ECSA lineage has led to a surge in cases throughout the Americas, marking a significant shift. The replacement of lineages in the American region constitutes a major epidemiological event, potentially affecting the dynamics of virus transmission and the clinical outcomes in impacted populations. The spatiotemporal analysis highlights CHIKV's distribution across Argentina and underscores the significant role of human mobility, especially when considering recent epidemics in neighbouring countries such as Paraguay and Uruguay, which have facilitated the spread and introduction of the viral strain into different districts. By integrating epidemiological data with genomic insights, we elucidate the patterns of virus dissemination, highlighting key areas of transmission and potential factors contributing to its spread.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Evolución Molecular , Genotipo , Filogenia , Argentina/epidemiología , Virus Chikungunya/genética , Virus Chikungunya/clasificación , Virus Chikungunya/aislamiento & purificación , Fiebre Chikungunya/epidemiología , Fiebre Chikungunya/virología , Fiebre Chikungunya/transmisión , Humanos , Genoma Viral , América Latina/epidemiología , Secuenciación Completa del Genoma , Análisis Espacio-Temporal , Variación Genética
2.
Prostate ; 71(10): 1097-107, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21557274

RESUMEN

BACKGROUND: Prostate smooth muscle cells (SMCs) are strongly involved in the development and progression of benign prostatic hyperplasia and prostate cancer. However, their participation in prostatitis has not been completely elucidated. Thus, we aimed to characterize the response of normal SMC to bacterial lipopolysaccharide (LPS). METHODS: Primary prostate SMCs from normal rats were stimulated with LPS (0.1, 1, or 10 µg/ml) for 24 or 48 hr. The phenotype was evaluated by electron microscopy, immunofluorescence, and Western blot of SMCα-actin (ACTA2), calponin, vimentin, and tenascin-C, while the innate immune response was assessed by immunodetection of TLR4, CD14, and nuclear NF-κB. The secretion of TNFα and IL6 was determined using ELISA. RESULTS: Bacterial LPS induces SMCs to develop a secretory phenotype including dilated rough endoplasmic reticulum cisternae with well-developed Golgi complexes. Furthermore, SMCs displayed a decrease in ACTA2 and calponin, and an increase in vimentin levels after LPS challenge. The co-expression of ACTA2 and vimentin, together with the induction of tenascin-C expression indicate that a myofibroblastic-like phenotype was induced by the endotoxin. Moreover, LPS elicited a TLR4 increase, with a peak in NF-κB activation occurring after 10 min of treatment. Finally, LPS stimulated the secretion of IL6 and TNFα. CONCLUSIONS: Prostate SMCs are capable of responding to LPS in vitro by dedifferentiating from a contractile to a miofibroblastic-like phenotype and secreting cytokines, with the TLR4 signaling pathway being involved in this response. In this way, prostate SMCs may contribute to the pathophysiology of inflammatory diseases by modifying the epithelial-stromal interactions.


Asunto(s)
Desdiferenciación Celular/efectos de los fármacos , Lipopolisacáridos/farmacología , Miocitos del Músculo Liso/efectos de los fármacos , Próstata/efectos de los fármacos , Animales , Western Blotting , Desdiferenciación Celular/fisiología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática , Técnica del Anticuerpo Fluorescente , Inmunidad Innata/efectos de los fármacos , Interleucina-6/metabolismo , Receptores de Lipopolisacáridos/metabolismo , Masculino , Miocitos del Músculo Liso/metabolismo , FN-kappa B/metabolismo , Fosforilación , Próstata/citología , Próstata/metabolismo , Ratas , Ratas Wistar , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda