Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Rapid Commun Mass Spectrom ; 34(7): e8640, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-31671216

RESUMEN

RATIONALE: Organic light-emitting diode (OLED) products based on display applications have become popular in the past 10 years, and new products are being commercialized with rapid frequency. Despite the many advantages of OLEDs, these devices still have a problem concerning lifetime. To gain an understanding of the degradation process, the authors have investigated the molecular information for deteriorated OLED devices using time-of-flight secondary ion mass spectrometry (TOF-SIMS). METHODS: TOF-SIMS depth profiling is an indispensable method for evaluating OLED devices. However, the depth profiles of OLEDs are generally difficult due to the mass interference among organic compounds, including degradation products. In this study, the tandem mass spectrometry (MS/MS) depth profiling method was used to characterize OLED devices. RESULTS: After degradation, defects comprised of small hydrocarbons were observed. Within the defect area, the diffusion of all OLED compounds was also observed. It is supposed that the source of the small hydrocarbons derives from decomposition of the OLED compounds and/or contaminants at the ITO interface. CONCLUSIONS: The true compound distributions have been determined using MS/MS depth profiling methods. The results suggest that luminance decay is mainly due to the decomposition and diffusion of OLED compounds, and that OLED decomposition may be accelerated by adventitious hydrocarbons present at the ITO surface.

2.
Rapid Commun Mass Spectrom ; 34(10): e8740, 2020 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-32003875

RESUMEN

RATIONALE: We report the unsolved molecular structure of the complex biopolymer sporopollenin exine extracted from Lycopodium clavatum pollen grains. METHODS: TOF-SIMS and CID-MS/MS, MALDI-TOF-MS and CID-TOF/TOF-MS/MS were used for the analysis of this complex biopolymer sporopollenin exine extracted from Lycopodium clavatum pollen grains. Solid-state 1 H- and 13 C-NMR, 2D 1 H-1 H NOESY, Rotor-synchronized 13 C{1 H} HSQC, and 13 C{1 H} multi CP-MAS NMR experiments were used to confirm the structural assigments revealed by MS and MS/MS studies. Finally, high-resolution XPS was used to check for the presence of aromatic components in sporopollenin. RESULTS: The combined MS and NMR analyses showed that sporopollenin contained poly(hydroxy acid) dendrimer-like networks with glycerol as a core unit, which accounted for the sporopollenin empirical formula. In addition, these analyses showed that the hydroxy acid monomers forming this network contained a ß-diketone moiety. Moreover, MALDI-TOF-MS and MS/MS allowed us to identify a unique macrocyclic oligomeric unit composed of polyhydroxylated tetraketide-like monomers. Lastly, high-resolution X-ray photoelectron spectroscopy (HR-XPS) showed the absence of aromaticity in sporopollenin. CONCLUSIONS: We report for the first time the two main building units that form the Lycopodium clavatum sporopollenin exine. The first building unit is a macrocyclic oligomer and/or polymer composed of polyhydroxylated tetraketide-like monomeric units, which represents the main rigid backbone of the sporopollenin biopolymer. The second building unit is the poly(hydroxy acid) network in which the hydroxyl end groups can be covalently attached by ether links to the hydroxylated macrocyclic backbone to form the sporopollenin biopolymer, a spherical dendrimer. Such spherical dendrimers are a typical type of microcapsule that have been used for drug delivery applications. Finally, HR-XPS indicated the total absence of aromaticity in the sporopollenin exine.


Asunto(s)
Biopolímeros/química , Carotenoides/química , Lycopodium/química , Polen/química , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Espectroscopía de Fotoelectrones , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en Tándem
3.
J Proteome Res ; 18(4): 1669-1678, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30784274

RESUMEN

Restenosis, or renarrowing of the arterial lumen, is a common recurrent disease following balloon angioplasty and stenting treatments for cardiovascular disease. A major technical barrier for deciphering restenotic mechanisms is the dynamic, spatial profiling of bioactive lipids in the arterial wall, especially in small animals. Here, applying matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI), we conducted the first lipidomic study of temporal-spatial profiling in a small animal model of angioplasty-induced restenosis. Cross sections were collected 3, 7, and 14 days after balloon angioplasty of rat carotid arteries. MALDI-MSI analyses showed that diacylglycerols (DAGs), signaling lipids associated with restenosis, and lysophosphatidylcholines (LysoPCs), whose function was uncharacterized in restenosis, dramatically increased at postangioplasty day 7 and day 14 in the neointimal layer of balloon-injured arteries compared to uninjured controls. In contrast, sphingomyelins (SMs) did not increase, but rather decreased at day 3, day 7, and day 14 in injured arteries versus the uninjured control arteries. These results revealed previously unexplored distinct temporal-spatial lipid dynamics in the restenotic arterial wall. Additionally, we employed time-of-flight secondary ion mass spectrometry (TOF-SIMS) tandem MS imaging for both molecular identification and imaging at high spatial resolution. These imaging modalities provide powerful tools for unraveling novel mechanisms of restenosis involving lipids or small signaling molecules.


Asunto(s)
Arterias Carótidas , Estenosis Carotídea , Lípidos/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Arterias Carótidas/química , Arterias Carótidas/metabolismo , Arterias Carótidas/patología , Estenosis Carotídea/metabolismo , Estenosis Carotídea/patología , Masculino , Ratas , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem
4.
Anal Chem ; 90(12): 7535-7543, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29856602

RESUMEN

Driven by a necessity for confident molecular identification at high spatial resolution, a new time-of-flight secondary ion mass spectrometry (TOF-SIMS) tandem mass spectrometry (tandem MS) imaging instrument has been recently developed. In this paper, the superior MS/MS spectrometry and imaging capability of this new tool is shown for natural product study. For the first time, via in situ analysis of the bioactive metabolites rubrynolide and rubrenolide in Amazonian tree species Sextonia rubra (Lauraceae), we were able both to analyze and to image by tandem MS the molecular products of natural biosynthesis. Despite the low abundance of the metabolites in the wood sample(s), efficient MS/MS analysis of these γ-lactone compounds was achieved, providing high confidence in the identification and localization. In addition, tandem MS imaging minimized the mass interferences and revealed specific localization of these metabolites primarily in the ray parenchyma cells but also in certain oil cells and, further, revealed the presence of previously unidentified γ-lactone, paving the way for future studies in biosynthesis.


Asunto(s)
Acetales/análisis , Alquenos/análisis , Alquinos/análisis , Productos Biológicos/análisis , Lauraceae/química , Árboles/química , Madera/química , Acetales/metabolismo , Alquenos/metabolismo , Alquinos/metabolismo , Productos Biológicos/metabolismo , Cromatografía Liquida , Lauraceae/metabolismo , Estructura Molecular , Propiedades de Superficie , Espectrometría de Masas en Tándem , Árboles/metabolismo , Madera/metabolismo
5.
Mol Pharm ; 15(3): 759-767, 2018 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-29384380

RESUMEN

The most promising F508del-CFTR corrector, VX-809, has been unsuccessful as an effective, stand-alone treatment for CF patients, but the rescue effect in combination with other drugs may confer an acceptable level of therapeutic benefit. Targeting cellular factors that modify trafficking may act to enhance the cell surface density of F508-CFTR with VX-809 correction. Our goal is to identify druggable kinases that enhance F508del-CFTR rescue and stabilization at the cell surface beyond that achievable with the VX-809 corrector alone. To achieve this goal, we implemented a new high-throughput screening paradigm that quickly and quantitatively measures surface density and total protein in the same cells. This allowed for rapid screening for increased surface targeting and proteostatic regulation. The assay utilizes fluorogen-activating-protein (FAP) technology with cell excluded and cell permeant fluorogenic dyes in a quick, wash-free fluorescent plate reader format on live cells to first measure F508del-CFTR expressed on the surface and then the total amount of F508del-CFTR protein present. To screen for kinase targets, we used Dharmacon's ON-TARGET plus SMARTpool siRNA Kinase library (715 target kinases) with and without 10 µM VX-809 treatment in triplicate at 37 °C. We identified several targets that had a significant interaction with VX-809 treatment in enhancing surface density with siRNA knockdown. Select small-molecule inhibitors of the kinase targets demonstrated augmented surface expression with VX-809 treatment.


Asunto(s)
Aminopiridinas/farmacología , Benzodioxoles/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/tratamiento farmacológico , Ensayos Analíticos de Alto Rendimiento/métodos , Fosfotransferasas/genética , Inhibidores de Proteínas Quinasas/farmacología , Aminopiridinas/uso terapéutico , Benzodioxoles/uso terapéutico , Membrana Celular/metabolismo , Fibrosis Quística/genética , Fibrosis Quística/terapia , Evaluación Preclínica de Medicamentos , Sinergismo Farmacológico , Quimioterapia Combinada/métodos , Citometría de Flujo , Colorantes Fluorescentes/química , Técnicas de Silenciamiento del Gen/métodos , Células HEK293 , Humanos , Mutación , Fosfotransferasas/antagonistas & inhibidores , Fosfotransferasas/metabolismo , Inhibidores de Proteínas Quinasas/uso terapéutico , ARN Interferente Pequeño/metabolismo , Resultado del Tratamiento
6.
Anal Chem ; 89(16): 8223-8227, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28753276

RESUMEN

Matrix-enhanced secondary ion mass spectrometry (ME-SIMS) has overcome one of the biggest disadvantages of SIMS analysis by providing the ability to detect intact biomolecules at high spatial resolution. By increasing ionization efficiency and minimizing primary ion beam-induced fragmentation of analytes, ME-SIMS has proven useful for detection of numerous biorelevant species, now including peptides. We report here the first demonstration of tandem ME-SIMS for de novo sequencing of endogenous neuropeptides from tissue in situ (i.e., rat pituitary gland). The peptide ions were isolated for tandem MS analysis using a 1 Da mass isolation window, followed by collision-induced dissociation (CID) at 1.5 keV in a collision cell filled with argon gas, for confident identification of the detected peptide. Using this method, neuropeptides up to m/z 2000 were detected and sequenced from the posterior lobe of the rat pituitary gland. These results demonstrate the potential for ME-SIMS tandem MS development in bottom-up proteomics imaging at high-spatial resolution.


Asunto(s)
Neuropéptidos/química , Análisis de Secuencia de Proteína/métodos , Secuencia de Aminoácidos , Animales , Hipófisis/química , Ratas Wistar , Espectrometría de Masa de Ion Secundario/métodos , Espectrometría de Masas en Tándem/métodos
7.
Microsc Microanal ; 23(4): 843-848, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28587700

RESUMEN

We present the first demonstration of a general method for the chemical characterization of small surface features at high magnification via simultaneous collection of mass spectrometry (MS) imaging and tandem MS imaging data. High lateral resolution tandem secondary ion MS imaging is employed to determine the composition of surface features on poly(ethylene terephthalate) (PET) that precipitate during heat treatment. The surface features, probed at a lateral resolving power of<200 nm using a surface-sensitive ion beam, are found to be comprised of ethylene terephthalate trimer at a greater abundance than is observed in the surrounding polymer matrix. This is the first chemical identification of PET surface precipitates made without either an extraction step or the use of a reference material. The new capability employed for this study achieves the highest practical lateral resolution ever reported for tandem MS imaging.

8.
Anal Chem ; 88(12): 6433-40, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27181574

RESUMEN

We report a method for the unambiguous identification of molecules in biological and materials specimens at high practical lateral resolution using a new TOF-SIMS parallel imaging MS/MS spectrometer. The tandem mass spectrometry imaging reported here is based on the precise monoisotopic selection of precursor ions from a TOF-SIMS secondary ion stream followed by the parallel and synchronous collection of the product ion data. Thus, our new method enables simultaneous surface screening of a complex matrix chemistry with TOF-SIMS (MS(1)) imaging and targeted identification of matrix components with MS/MS (MS(2)) imaging. This approach takes optimal advantage of all ions produced from a multicomponent sample, compared to classical tandem mass spectrometric methods that discard all ions with the exception of specific ions of interest. We have applied this approach for molecular surface analysis and molecular identification on the nanometer scale. High abundance sensitivity is achieved at low primary ion dose density; therefore, one-of-a-kind samples may be relentlessly probed before ion-beam-induced molecular damage is observed.

9.
J Virol ; 88(7): 3623-35, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24403594

RESUMEN

UNLABELLED: The chemokine receptor CCR5 is essential for HIV infection and is thus a potential target for vaccine development. However, because CCR5 is a host protein, generation of anti-CCR5 antibodies requires the breaking of immune tolerance and thus carries the risk of autoimmune responses. In this study, performed in mice, we compared 3 different immunogens representing surface domains of murine CCR5, 4 different adjuvants, and 13 different immunization protocols, with the goal of eliciting HIV-blocking activity without inducing autoimmune dysfunction. In all cases the CCR5 sequences were presented as fusions to the Flock House virus (FHV) capsid precursor protein. We found that systemic immunization and mucosal boosting elicited CCR5-specific antibodies and achieved consistent priming in Peyer's patches, where most cells showed a phenotype corresponding to activated B cells and secreted high levels of IgA, representing up to one-third of the total HIV-blocking activity. Histopathological analysis revealed mild to moderate chronic inflammation in some tissues but failed in reporting signs of autoimmune dysfunction associated with immunizations. Antisera against immunogens representing the N terminus and extracellular loops 1 and 2 (Nter1 and ECL1 and ECL2) of CCR5 were generated. All showed specific anti-HIV activity, which was stronger in the anti-ECL1 and -ECL2 sera than in the anti-Nter sera. ECL1 and ECL2 antisera induced nearly complete long-lasting CCR5 downregulation of the receptor, and especially, their IgG-depleted fractions prevented HIV infection in neutralization and transcytosis assays. In conclusion, the ECL1 and ECL2 domains could offer a promising path to achieve significant anti-HIV activity in vivo. IMPORTANCE: The study was the first to adopt a systematic strategy to compare the immunogenicities of all extracellular domains of the CCR5 molecule and to set optimal conditions leading to generation of specific antibodies in the mouse model. There were several relevant findings, which could be translated into human trials. (i) Prime (systemic) and boost (mucosal) immunization is the best protocol to induce anti-self antibodies with the expected properties. (ii) Aluminum is the best adjuvant in mice and thus can be easily used in nonhuman primates (NHP) and humans. (iii) The Flock House virus (FHV) system represents a valid delivery system, as the structure is well known and is not pathogenic for humans, and it is possible to introduce constrained regions able to elicit antibodies that recognize conformational epitopes. (iv) The best CCR5 vaccine candidate should include either extracellular loop 1 or 2 (ECL1 or ECL2), but not N terminus domains.


Asunto(s)
Autoanticuerpos/inmunología , Autoantígenos/administración & dosificación , Inmunización/métodos , Inmunoglobulina A/inmunología , Ganglios Linfáticos Agregados/inmunología , Receptores CCR5/inmunología , Receptores del VIH/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Estructuras Animales/patología , Animales , Autoantígenos/inmunología , Linfocitos B/inmunología , Proteínas de la Cápside/genética , Proteínas de la Cápside/inmunología , Portadores de Fármacos , Histocitoquímica , Ratones , Nodaviridae/genética , Nodaviridae/inmunología , Proteínas Recombinantes de Fusión/administración & dosificación , Proteínas Recombinantes de Fusión/inmunología
10.
Cytometry A ; 83(2): 220-6, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23303704

RESUMEN

Monitoring the trafficking of multiple proteins simultaneously in live cells is of great interest because many receptor proteins are found to function together with others in the same cell. However, existing fluorescent labeling techniques have restricted the mechanistic study of functional receptor pairs. We have expanded a hybrid system combining fluorogen-activating protein (FAP) technology and high-throughput flow cytometry to a new type of biosensor that is robust, sensitive, and versatile. This provides the opportunity to study multiple trafficking proteins in the same cell. Human beta2 adrenergic receptor (ß2AR) fused with FAP AM2.2 and murine C-C chemokines receptor type 5 fused with FAP MG13 was chosen for our model system. The function of the receptor and the binding between MG13 and fluorogen MG-2p have been characterized by flow cytometry and confocal microscopy assays. The binding of fluorogen and the FAP pair is highly specific, while both FAP-tagged fusion proteins function similarly to their wild-type counterparts. The system has successfully served as a counter screen assay to eliminate false positive compounds identified in a screen against NIH Molecular Libraries Small Molecule Repository targeting regulators of the human ß2AR.


Asunto(s)
Técnicas Biosensibles/métodos , Colorantes Fluorescentes/química , Ensayos Analíticos de Alto Rendimiento , Proteínas Recombinantes de Fusión/química , Agonistas de Receptores Adrenérgicos beta 2/farmacología , Quimiocina CCL5/farmacología , Relación Dosis-Respuesta a Droga , Citometría de Flujo/métodos , Humanos , Concentración 50 Inhibidora , Isoproterenol/farmacología , Unión Proteica , Receptores Adrenérgicos beta 2/biosíntesis , Receptores CCR5/agonistas , Receptores CCR5/biosíntesis , Proteínas Recombinantes de Fusión/biosíntesis , Colorantes de Rosanilina/química , Células U937
11.
Methods ; 57(3): 308-17, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22366230

RESUMEN

The use of fluorescent proteins, particularly when genetically fused to proteins of biological interest, have greatly advanced many flow cytometry research applications. However, there remains a major limitation to this methodology in that only total cellular fluorescence is measured. Commonly used fluorescent proteins (e.g., EGFP and its variants) are fluorescent whether the fusion protein exists on the surface or in sub-cellular compartments. A flow cytometer cannot distinguish between these separate sources of fluorescence. This can be of great concern when using flow cytometry, plate readers or microscopy to quantify cell surface receptors or other surface proteins genetically fused to fluorescent proteins. Recently developed fluorogen activating proteins (FAPs) solve many of these issues by allowing the selective visualization of only those cell surface proteins that are exposed to the extracellular milieu. FAPs are GFP-sized single chain antibodies that specifically bind to and generate fluorescence from otherwise non-fluorescent dyes ('activate the fluorogen'). Like the fluorescent proteins, FAPs can be genetically fused to proteins of interest. When exogenously added fluorogens bind FAPs, fluorescence immediately increases by as much as 20,000-fold, rendering the FAP fusion proteins highly fluorescent. Moreover, since fluorogens can be made membrane impermeant, fluorescence can be limited to only those receptors expressed on the cell surface. Using cells expressing beta-2 adrenergic receptor (ß2AR) fused at its N-terminus to a FAP, flow cytometry based receptor internalization assays have been developed and characterized. The fluorogen/FAP system is ideally suited to the study of cell surface proteins by fluorescence and avoids drawbacks of using receptor/fluorescent protein fusions, such as internal accumulation. We also briefly comment on extending FAP-based technologies to the study of events occurring inside of the cell as well.


Asunto(s)
Receptores Adrenérgicos beta 2/metabolismo , Anticuerpos de Cadena Única/metabolismo , Antagonistas de Receptores Adrenérgicos beta 2/farmacología , Agonistas Adrenérgicos beta/farmacología , Animales , Bioensayo , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Citometría de Flujo , Fluorescencia , Colorantes Fluorescentes , Proteínas Fluorescentes Verdes , Humanos , Isoproterenol/farmacología , Cinética , Ratones , Propranolol/farmacología , Unión Proteica , Receptores Adrenérgicos beta 2/química , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/metabolismo , Anticuerpos de Cadena Única/química
12.
Mol Pharmacol ; 82(4): 645-57, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22767611

RESUMEN

We developed a platform combining fluorogen-activating protein (FAP) technology with high-throughput flow cytometry to detect real-time protein trafficking to and from the plasma membrane in living cells. The hybrid platform facilitates drug discovery for trafficking receptors such as G protein-coupled receptors and was validated with the ß2-adrenergic receptor (ß2AR) system. When a chemical library containing ∼1200 off-patent drugs was screened against cells expressing FAP-tagged ß2ARs, all 33 known ß2AR-active ligands in the library were successfully identified, together with a number of compounds that might regulate receptor internalization in a nontraditional manner. Results indicated that the platform identified ligands of target proteins regardless of the associated signaling pathway; therefore, this approach presents opportunities to search for biased receptor modulators and is suitable for screening of multiplexed targets for improved efficiency. The results revealed that ligands may be biased with respect to the rate or duration of receptor internalization and that receptor internalization may be independent of activation of the mitogen-activated protein kinase pathway.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Receptores Adrenérgicos beta 2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Agonistas de Receptores Adrenérgicos beta 2/farmacología , Antagonistas de Receptores Adrenérgicos beta 2/farmacología , Unión Competitiva , Citometría de Flujo/métodos , Proteínas Fluorescentes Verdes/genética , Humanos , Ligandos , Transporte de Proteínas , Receptores Adrenérgicos beta 2/genética , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factores de Tiempo , Transfección , Células U937
13.
Cytometry A ; 77(8): 776-82, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20653017

RESUMEN

This study explores the general utility of a new class of biosensor that allows one to selectively visualize molecules of a chosen membrane protein that are at the cell surface. These biosensors make use of recently described bipartite fluoromodules comprised of a fluorogen-activating protein (FAP) and a small molecule (fluorogen) whose fluorescence increases dramatically when noncovalently bound by the FAP (Szent-Gyorgyi et al., Nat Biotechnol 2010;00:000-000).


Asunto(s)
Técnicas Biosensibles/métodos , Colorantes Fluorescentes/metabolismo , Proteínas de la Membrana/metabolismo , Agonistas de Receptores Adrenérgicos beta 2 , Animales , Membrana Celular/metabolismo , Supervivencia Celular , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Endocitosis , Colorantes Fluorescentes/química , Transportador de Glucosa de Tipo 4/metabolismo , Humanos , Proteínas de la Membrana/química , Ratones , Microscopía Fluorescente , Células 3T3 NIH , Estructura Terciaria de Proteína , Receptores Adrenérgicos beta 2/metabolismo
14.
Anal Chem ; 81(24): 9930-40, 2009 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-19919043

RESUMEN

Three-dimensional (3D) chemical images reveal the surface and subsurface distribution of pharmaceutical molecules in a coronary stent coating and are used to visualize the drug distribution as a function of elution time. The coronary stent coating consists of 25% (w/w) sirolimus in a poly(lactic-co-glycolic acid) (PLGA) matrix and is spray-coated onto metal coupons. Information regarding the 3D distribution of sirolimus in PLGA as a function of elution time was obtained by time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging using a Au(+) ion beam for analysis in conjunction with a C(60)(+) ion beam for sputter depth profiling. The examined formulation is shown to have large areas of the surface as well as subsurface channels that are composed primarily of the drug, followed by a drug-depleted region, and finally, a relatively homogeneous dispersion of the drug in the polymer matrix. Elution is shown to occur from the drug-enriched surface region on a relatively short time scale and more gradually from the subsurface regions of homogeneously dispersed drug. Bulk composition was also probed by X-ray photoelectron spectroscopy (XPS) depth profiling and confocal Raman imaging, the results of which substantiate the TOF-SIMS 3D images. Finally, the effectiveness of a C(60)(+) ion beam for use in 3D characterization of organic systems is demonstrated against another polyatomic ion source (e.g., SF(5)(+)).


Asunto(s)
Stents Liberadores de Fármacos , Ácido Láctico/química , Preparaciones Farmacéuticas/análisis , Ácido Poliglicólico/química , Sirolimus/química , Espectrometría de Masa de Ion Secundario/métodos , Oro/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Propiedades de Superficie , Factores de Tiempo
15.
Sci Rep ; 9(1): 1928, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30760744

RESUMEN

Molecular analysis by parallel tandem mass spectrometry (MS/MS) imaging contributes to the in situ characterization of biosynthetic intermediates which is crucial for deciphering the metabolic pathways in living organisms. We report the first use of TOF-SIMS MS/MS imaging for the cellular localization and characterization of biosynthetic intermediates of bioactive γ-lactones rubrynolide and rubrenolide in the Amazonian tree Sextonia rubra (Lauraceae). Five γ-lactones, including previously reported rubrynolide and rubrenolide, were isolated using a conventional approach and their structural characterization and localization at a lateral resolution of ~400 nm was later achieved using TOF-SIMS MS/MS imaging analysis. 2D/3D MS imaging at subcellular level reveals that putative biosynthetic γ-lactones intermediates are localized in the same cell types (ray parenchyma cells and oil cells) as rubrynolide and rubrenolide. Consequently, a revised metabolic pathway of rubrynolide was proposed, which involves the reaction between 2-hydroxysuccinic acid and 3-oxotetradecanoic acid, contrary to previous studies suggesting a single polyketide precursor. Our results provide insights into plant metabolite production in wood tissues and, overall, demonstrate that combining high spatial resolution TOF-SIMS imaging and MS/MS structural characterization offers new opportunities for studying molecular and cellular biochemistry in plants.


Asunto(s)
Acetales/metabolismo , Alquenos/metabolismo , Alquinos/metabolismo , Lauraceae/metabolismo , Espectrometría de Masas en Tándem , Madera/metabolismo
16.
Heart Surg Forum ; 11(5): E316-22, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19131308

RESUMEN

The causal factors of the systemic inflammatory response to cardiopulmonary bypass (CPB) were correctly identified in the early 1990 s: "... activation of complement, coagulation, fibrinolytic, and kallikrein cascades, activation of neutrophils with degranulation and protease enzyme release, oxygen radical production, and the synthesis of various cytokines from mononuclear cells" [Butler 1993]. Why therefore have clinical advances to curb the systemic inflammatory response proven such a disappointment? Part of the problem is that cardiac surgery has never taken intellectual ownership of this issue, borrowing its diagnosis from critical care medicine and failing to define the minimal criteria that should be measured when reporting on the systemic inflammatory response. An evidence based review of the current literature by many of the coauthors on this paper found that the majority of studies on the systemic inflammatory response did not measure a single one of the causal factors listed above - thus hindering our ability to identify mechanisms of causation and identify drug targets [Landis 2008]. A panel of experts convened at the Outcomes XII meeting, Barbados 2008, drafted the present consensus document in order to provide a framework to guide future studies and interdictions of the systemic inflammatory response. Herein, we have recommended: 1) mandatory reporting of minimal CPB and perfusion criteria that may affect outcomes, 2) reporting of a minimal set of causal inflammatory markers linked to adverse sequelae, and 3) reporting of at least one clinical end-point of organ injury, from a list of endpoints and markers of organ injury that balance practicality with clinical meaningfulness. It is our collective belief that this document will serve as a foundation for furthering our understanding of the influence of CPB practice with the systemic inflammatory response by standardizing the reporting of research findings in the peer-reviewed literature.


Asunto(s)
Cardiología/normas , Puente Cardiopulmonar/efectos adversos , Puente Cardiopulmonar/normas , Inflamación/diagnóstico , Inflamación/etiología , Notificación Obligatoria , Guías de Práctica Clínica como Asunto , Conferencias de Consenso como Asunto , Humanos , Internacionalidad
17.
J Am Soc Mass Spectrom ; 29(8): 1571-1581, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29949055

RESUMEN

A unique method for identification of biomolecular components in different biological specimens, while preserving the capability for high speed 2D and 3D molecular imaging, is employed to investigate cellular response to oxidative stress. The employed method enables observing the distribution of the antioxidant α-tocopherol and other molecules in cellular structures via time-of-flight secondary ion mass spectrometry (TOF-SIMS (MS1)) imaging in parallel with tandem mass spectrometry (MS2) imaging, collected simultaneously. The described method is employed to examine a network formed by neuronal cells differentiated from human induced pluripotent stem cells (iPSCs), a model for investigating human neurons in vitro. The antioxidant α-tocopherol is identified in situ within different cellular layers utilizing a 3D TOF-SIMS tandem MS imaging analysis. As oxidative stress also plays an important role in mediating inflammation, the study was expanded to whole body tissue sections of M. marinum-infected zebrafish, a model organism for tuberculosis. The TOF-SIMS tandem MS imaging results reveal an increased presence of α-tocopherol in response to the pathogen. Graphical Abstract ᅟ.


Asunto(s)
Imagen Molecular/métodos , Espectrometría de Masas en Tándem/métodos , alfa-Tocoferol/análisis , Animales , Células Cultivadas , Peces , Humanos , Imagenología Tridimensional , Células Madre Pluripotentes Inducidas/química , Masculino , Persona de Mediana Edad , Neuronas/química , Imagen de Cuerpo Entero/métodos , Pez Cebra
18.
Biointerphases ; 13(3): 03B409, 2018 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-29482330

RESUMEN

Advances in three-dimensional secondary ion mass spectrometry (SIMS) imaging have enabled visualizing the subcellular distributions of various lipid species within individual cells. However, the difficulty of locating organelles using SIMS limits efforts to study their lipid compositions. Here, the authors have assessed whether endoplasmic reticulum (ER)-Tracker Blue White DPX®, which is a commercially available stain for visualizing the endoplasmic reticulum using fluorescence microscopy, produces distinctive ions that can be used to locate the endoplasmic reticulum using SIMS. Time-of-flight-SIMS tandem mass spectrometry (MS2) imaging was used to identify positively and negatively charged ions produced by the ER-Tracker stain. Then, these ions were used to localize the stain and thus the endoplasmic reticulum, within individual human embryonic kidney cells that contained higher numbers of endoplasmic reticulum-plasma membrane junctions on their surfaces. By performing MS2 imaging of selected ions in parallel with the precursor ion (MS1) imaging, the authors detected a chemical interference native to the cell at the same nominal mass as the pentafluorophenyl fragment from the ER-Tracker stain. Nonetheless, the fluorine secondary ions produced by the ER-Tracker stain provided a distinctive signal that enabled locating the endoplasmic reticulum using SIMS. This simple strategy for visualizing the endoplasmic reticulum in individual cells using SIMS could be combined with existing SIMS methodologies for imaging intracellular lipid distribution and to study the lipid composition within the endoplasmic reticulum.


Asunto(s)
Retículo Endoplásmico/química , Espectrometría de Masa de Ion Secundario/métodos , Espectrometría de Masas en Tándem/métodos , Células Cultivadas , Células Epiteliales/química , Colorantes Fluorescentes/metabolismo , Humanos , Imagenología Tridimensional/métodos , Coloración y Etiquetado/métodos , Propiedades de Superficie
19.
Biointerphases ; 13(3): 03B406, 2018 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29402092

RESUMEN

The iridescent wings of the Chalcopterix rutilans damselfly (Rambur) (Odonata, Polythoridae) are investigated with focused ion beam/scanning electron microscopy, transmission electron microscopy, and time-of-flight secondary ion mass spectrometry. The electron microscopy images reveal a natural photonic crystal as the source of the varying colors. The photonic crystal has a consistent number and thickness (∼195 nm) of the repeat units on the ventral side of the wing, which is consistent with the red color visible from the bottom side of the wing in all regions. The dorsal side of the wing shows strong color variations ranging from red to blue depending on the region. In the electron microscopy images, the dorsal side of the wing exhibits varied number and thicknesses of the repeat units. The repeat unit spacings for the red, yellow/green, and blue regions are approximately 195, 180, and 145 nm, respectively. Three-dimensional analysis of the natural photonic crystals by time-of-flight secondary ion mass spectrometry reveals that changes in the relative levels of Na, K, and eumelanin are responsible for the varying dielectric constant needed to generate the photonic crystal. The photonic crystal also appears to be assembled with a chemical tricomponent layer structure due to the enhancement of the CH6N3+ species at every other interface between the high/low dielectric constant layers.


Asunto(s)
Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Odonata/química , Odonata/ultraestructura , Espectrometría de Masa de Ion Secundario , Alas de Animales/química , Alas de Animales/ultraestructura , Animales , Iridiscencia , Melaninas/análisis , Potasio/análisis , Sodio/análisis
20.
Methods Mol Biol ; 1618: 165-173, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28523507

RESUMEN

Unambiguous identification of detected species is essential in complex biomedical samples. To date, there are not many mass spectrometry imaging techniques that can provide both high spatial resolution and identification capabilities. A new and patented imaging tandem mass spectrometer, exploiting the unique characteristics of the nanoTOF II (Physical Electronics, USA) TOF-SIMS TRIFT instrument, was developed to address this.Tandem mass spectrometry is based on the selection of precursor ions from the full secondary ion spectrum (MS1), followed by energetic activation and fragmentation, and collection of the fragment ions to obtain a tandem MS spectrum (MS2). The PHI NanoTOF II mass spectrometer is equipped with a high-energy collision induced dissociation (CID) fragmentation cell as well as a second time-of-flight analyzer developed for simultaneous ToF-SIMS and tandem MS imaging experiments.We describe here the results of a ToF-SIMS imaging experiment on a thin tissue section of an infected zebrafish as a model organism for tuberculosis. The focus is on the obtained ion distribution plot of a fatty acid as well as its identification by tandem mass spectrometry.


Asunto(s)
Ácidos Grasos/análisis , Lípidos/análisis , Espectrometría de Masas en Tándem/métodos , Animales , Humanos , Pez Cebra
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda