Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Mol Metab ; 78: 101830, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38787338

RESUMEN

OBJECTIVE: The liver is a central regulator of energy metabolism exerting its influence both through intrinsic processing of substrates such as glucose and fatty acid as well as by secreting endocrine factors, known as hepatokines, which influence metabolism in peripheral tissues. Human genome wide association studies indicate that a predicted loss-of-function variant in the Inhibin ßE gene (INHBE), encoding the putative hepatokine Activin E, is associated with reduced abdominal fat mass and cardiometabolic disease risk. However, the regulation of hepatic Activin E and the influence of Activin E on adiposity and metabolic disease are not well understood. Here, we examine the relationship between hepatic Activin E and adipose metabolism, testing the hypothesis that Activin E functions as part of a liver-adipose, inter-organ feedback loop to suppress adipose tissue lipolysis in response to elevated serum fatty acids and hepatic fatty acid exposure. METHODS: The relationship between hepatic Activin E and non-esterified fatty acids (NEFA) released from adipose lipolysis was assessed in vivo using fasted CL 316,243 treated mice and in vitro using Huh7 hepatocytes treated with fatty acids. The influence of Activin E on adipose lipolysis was examined using a combination of Inhbe knockout mice, a mouse model of hepatocyte-specific overexpression of Activin E, and mouse brown adipocytes treated with Activin E enriched media. RESULTS: Increasing hepatocyte NEFA exposure in vivo by inducing adipose lipolysis through fasting or CL 316,243 treatment increased hepatic Inhbe expression. Similarly, incubation of Huh7 human hepatocytes with fatty acids increased expression of INHBE. Genetic ablation of Inhbe in mice increased fasting circulating NEFA and hepatic triglyceride accumulation. Treatment of mouse brown adipocytes with Activin E conditioned media and overexpression of Activin E in mice suppressed adipose lipolysis and reduced serum FFA levels, respectively. The suppressive effects of Activin E on lipolysis were lost in CRISPR-mediated ALK7 deficient cells and ALK7 kinase deficient mice. Disruption of the Activin E-ALK7 signaling axis in Inhbe KO mice reduced adiposity upon HFD feeding, but caused hepatic steatosis and insulin resistance. CONCLUSIONS: Taken together, our data suggest that Activin E functions as part of a liver-adipose feedback loop, such that in response to increased serum free fatty acids and elevated hepatic triglyceride, Activin E is released from hepatocytes and signals in adipose through ALK7 to suppress lipolysis, thereby reducing free fatty acid efflux to the liver and preventing excessive hepatic lipid accumulation. We find that disrupting this Activin E-ALK7 inter-organ communication network by ablation of Inhbe in mice increases lipolysis and reduces adiposity, but results in elevated hepatic triglyceride and impaired insulin sensitivity. These results highlight the liver-adipose, Activin E-ALK7 signaling axis as a critical regulator of metabolic homeostasis.


Asunto(s)
Activinas , Tejido Adiposo , Ácidos Grasos , Subunidades beta de Inhibinas , Lipólisis , Hígado , Animales , Ratones , Hígado/metabolismo , Tejido Adiposo/metabolismo , Humanos , Masculino , Subunidades beta de Inhibinas/metabolismo , Subunidades beta de Inhibinas/genética , Ácidos Grasos/metabolismo , Activinas/metabolismo , Ratones Endogámicos C57BL , Hepatocitos/metabolismo , Ácidos Grasos no Esterificados/metabolismo , Ácidos Grasos no Esterificados/sangre , Ratones Noqueados , Adiposidad
2.
Nat Commun ; 14(1): 3953, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37402735

RESUMEN

Urocortin 2 (UCN2) acts as a ligand for the G protein-coupled receptor corticotropin-releasing hormone receptor 2 (CRHR2). UCN2 has been reported to improve or worsen insulin sensitivity and glucose tolerance in vivo. Here we show that acute dosing of UCN2 induces systemic insulin resistance in male mice and skeletal muscle. Inversely, chronic elevation of UCN2 by injection with adenovirus encoding UCN2 resolves metabolic complications, improving glucose tolerance. CRHR2 recruits Gs in response to low concentrations of UCN2, as well as Gi and ß-Arrestin at high concentrations of UCN2. Pre-treating cells and skeletal muscle ex vivo with UCN2 leads to internalization of CRHR2, dampened ligand-dependent increases in cAMP, and blunted reductions in insulin signaling. These results provide mechanistic insights into how UCN2 regulates insulin sensitivity and glucose metabolism in skeletal muscle and in vivo. Importantly, a working model was derived from these results that unifies the contradictory metabolic effects of UCN2.


Asunto(s)
Resistencia a la Insulina , Animales , Masculino , Ratones , Hormona Liberadora de Corticotropina/genética , Hormona Liberadora de Corticotropina/metabolismo , Glucosa/metabolismo , Insulina , Ligandos , Receptores de Hormona Liberadora de Corticotropina/genética , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Urocortinas/genética , Urocortinas/metabolismo
3.
Science ; 363(6430): 989-993, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30819964

RESUMEN

To meet systemic metabolic needs, adipocytes release fatty acids and glycerol through the action of neutral lipases. Here, we describe a secondary pathway of lipid release from adipocytes that is independent of canonical lipolysis. We found that adipocytes release exosome-sized, lipid-filled vesicles (AdExos) that become a source of lipid for local macrophages. Adipose tissue from lean mice released ~1% of its lipid content per day via exosomes ex vivo, a rate that more than doubles in obese animals. AdExos and associated factors were sufficient to induce in vitro differentiation of bone marrow precursors into adipose tissue macrophage-like cells. Thus, AdExos are both an alternative pathway of local lipid release and a mechanism by which parenchymal cells can modulate tissue macrophage differentiation and function.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo/inmunología , Exosomas/metabolismo , Metabolismo de los Lípidos , Macrófagos/metabolismo , Tejido Adiposo/citología , Animales , Células de la Médula Ósea/metabolismo , Diferenciación Celular , Células Cultivadas , Lipasa/metabolismo , Lipólisis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/metabolismo
4.
Mol Metab ; 29: 114-123, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31668382

RESUMEN

OBJECTIVE: Melanin-concentrating hormone (MCH) plays a key role in regulating energy balance. MCH acts via its receptor MCHR1, and MCHR1 deletion increases energy expenditure and locomotor activity, which is associated with a hyperdopaminergic state. Since MCHR1 expression is widespread, the neurons supporting the effects of MCH on energy expenditure are not clearly defined. There is a high density of MCHR1 neurons in the striatum, and these neurons are known to be GABAergic. We thus determined if MCH acts via this GABAergic neurocircuit to mediate energy balance. METHODS: We generated a Mchr1-flox mouse and crossed it with the Vgat-cre mouse to assess if MCHR1 deletion from GABAergic neurons expressing the vesicular GABA transporter (vGAT) in female Vgat-Mchr1-KO mice resulted in lower body weights or increased energy expenditure. Additionally, we determined if MCHR1-expressing neurons within the accumbens form part of the neural circuit underlying MCH-mediated energy balance by delivering an adeno-associated virus expressing Cre recombinase to the accumbens nucleus of Mchr1-flox mice. To evaluate if a dysregulated dopaminergic tone leads to their hyperactivity, we determined if the dopamine reuptake blocker GBR12909 prolonged the drug-induced locomotor activity in Vgat-Mchr1-KO mice. Furthermore, we also performed amperometry recordings to test whether MCHR1 deletion increases dopamine output within the accumbens and whether MCH can suppress dopamine release. RESULTS: Vgat-Mchr1-KO mice have lower body weight, increased energy expenditure, and increased locomotor activity. Similarly, restricting MCHR1 deletion to the accumbens nucleus also increased locomotor activity. Vgat-Mchr1-KO mice show increased and prolonged sensitivity to GBR12909-induced locomotor activity, and amperometry recordings revealed that GBR12909 elevated accumbens dopamine levels to twice that of controls, thus MCHR1 deletion may lead to a hyperdopaminergic state that mediates their observed hyperactivity. Consistent with the inhibitory effect of MCH, we found that MCH acutely suppresses dopamine release within the accumbens. CONCLUSIONS: As with established models of systemic MCH or MCHR1 deletion, we found that MCHR1 deletion from GABAergic neurons, specifically those within the accumbens nucleus, also led to increased locomotor activity. A hyperdopaminergic state underlies this increased locomotor activity, and is consistent with our finding that MCH signaling within the accumbens nucleus suppresses dopamine release. In effect, MCHR1 deletion may disinhibit dopamine release leading to the observed hyperactivity.


Asunto(s)
Neuronas GABAérgicas/metabolismo , Locomoción , Receptores de Somatostatina/metabolismo , Animales , Dopamina/metabolismo , Metabolismo Energético , Locomoción/efectos de los fármacos , Ratones , Ratones Transgénicos , Núcleo Accumbens/metabolismo , Piperazinas/farmacología , Receptores de Somatostatina/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/deficiencia , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética
5.
Eur Neuropsychopharmacol ; 25(10): 1808-16, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26092201

RESUMEN

Olanzapine (OLZ), an atypical antipsychotic, can be effective in treating patients with restricting type anorexia nervosa who exercise excessively. Clinical improvements include weight gain and reduced pathological hyperactivity. However the neuronal populations and mechanisms underlying OLZ actions are not known. We studied the effects of OLZ on hyperactivity using male mice lacking the hypothalamic neuropeptide melanin-concentrating hormone (MCHKO) that are lean and hyperactive. We compared the in vivo effects of systemic or intra-accumbens nucleus (Acb) OLZ administration on locomotor activity in WT and MCHKO littermates. Acute systemic OLZ treatment in WT mice significantly reduced locomotor activity, an effect that is substantially attenuated in MCHKO mice. Furthermore, OLZ infusion directly into the Acb of WT mice reduced locomotor activity, but not in MCHKO mice. To identify contributing neuronal mechanisms, we assessed the effect of OLZ treatment on Acb synaptic transmission ex vivo and in vitro. Intraperitoneal OLZ treatment reduced Acb GABAergic activity in WT but not MCHKO neurons. This effect was also seen in vitro by applying OLZ to acute brain slices. OLZ reduced the frequency and amplitude of GABAergic activity that was more robust in WT than MCHKO Acb. These findings indicate that OLZ reduced Acb GABAergic transmission and that MCH is necessary for the hypolocomotor effects of OLZ.


Asunto(s)
Benzodiazepinas/farmacología , Fármacos del Sistema Nervioso Central/farmacología , Hormonas Hipotalámicas/metabolismo , Melaninas/metabolismo , Actividad Motora/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Hormonas Hipofisarias/metabolismo , Carrera , Animales , Relación Dosis-Respuesta a Droga , Hormonas Hipotalámicas/genética , Masculino , Melaninas/genética , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/fisiología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Núcleo Accumbens/fisiología , Olanzapina , Técnicas de Placa-Clamp , Hormonas Hipofisarias/genética , Carrera/fisiología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Técnicas de Cultivo de Tejidos , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda