RESUMEN
Vitamin D deficiency is prevalent in pregnant women and is associated with adverse pregnancy outcomes, in particular disorders of malplacentation. The active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), is a potent regulator of innate and adaptive immunity, but its immune effects during pregnancy remain poorly understood. During early gestation, the predominant immune cells in maternal decidua are uterine natural killer cells (uNK), but the responsivity of these cells to 1,25(OH)2D3 is unknown despite high levels of 1,25(OH)2D3 in decidua. Transcriptomic responses to 1,25(OH)2D3 were characterised in paired donor uNK and peripheral natural killer cells (pNK) following cytokine (CK) stimulation. RNA-seq analyses indicated 911 genes were differentially expressed in CK-stimulated uNK versus CK-stimulated pNK in the absence of 1,25(OH)2D3, with predominant differentially expressed pathways being associated with glycolysis and transforming growth factor ß (TGFß). RNA-seq also showed that the vitamin D receptor (VDR) and its heterodimer partner retinoid X receptor were differentially expressed in CK-stimulated uNK vs CK-stimulated pNK. Further analyses confirmed increased expression of VDR mRNA and protein, as well as VDR-RXR target in CK-stimulated uNK. RNA-seq analysis showed that in CK-stimulated pNK, 1,25(OH)2D3 induced 38 and suppressed 33 transcripts, whilst in CK-stimulated uNK 1,25(OH)2D3 induced 46 and suppressed 19 genes. However, multiple comparison analysis of transcriptomic data indicated that 1,25(OH)2D3 had no significant overall effect on gene expression in either CK-stimulated pNK or uNK. These data indicate that CK-stimulated uNK are transcriptionally distinct from pNK and, despite expressing abundant VDR, neither pNK nor uNK are sensitive targets for vitamin D.
Asunto(s)
Calcitriol/farmacología , Células Asesinas Naturales/efectos de los fármacos , Transcriptoma , Células Cultivadas , Citocinas , Femenino , Expresión Génica/efectos de los fármacos , Humanos , Células Asesinas Naturales/metabolismo , Embarazo , Receptores de Calcitriol/metabolismo , Útero/inmunologíaRESUMEN
Accuracy of determining radiation interception, and hence radiation use efficiency, depends on the method of measuring photosynthetically active radiation intercepted. Methods vary, from expensive instruments such as Sunfleck ceptometers to simple methods such as digital photography. However, before universal use of digital photography there is need to determine its reliability and compare it with conventional, but expensive, methods. In a series of experiments at Lincoln, New Zealand, canopy development for barley, wheat, white clover and four forage brassica species was determined using both digital photographs and Sunfleck ceptometer. Values obtained were used to calculate conversion coefficient (Kf/Ki) ratios between the two methods. Digital photographs were taken at 45° and 90° for barley, wheat and white clover and at only 90° for brassicas. There was an interaction of effects of crop and cultivar for the cereal crops. Barley closed canopies earlier than wheat, and 'Emir' barley and 'Stettler' wheat had consistently higher canopy cover than 'Golden Promise' and 'HY459', respectively. Canopy cover was consistently larger at 45° than 90° for cereals. However, for white clover, the angle of digital photography was not important. There was also an interaction between effects of species and method of determining canopy cover for brassicas. Photographs gave higher cover values than ceptometer for forage rape and turnip, but the relationship was variable for forage kale and swede. Kf/Ki ratios of 1.0-1.10 for cereals, white clover and forage rape and turnip show that digital photographs can be used to estimated radiation interception, in place of Sunfleck ceptometer, for these crops.