Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Hum Brain Mapp ; 43(1): 207-233, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33368865

RESUMEN

Structural hippocampal abnormalities are common in many neurological and psychiatric disorders, and variation in hippocampal measures is related to cognitive performance and other complex phenotypes such as stress sensitivity. Hippocampal subregions are increasingly studied, as automated algorithms have become available for mapping and volume quantification. In the context of the Enhancing Neuro Imaging Genetics through Meta Analysis Consortium, several Disease Working Groups are using the FreeSurfer software to analyze hippocampal subregion (subfield) volumes in patients with neurological and psychiatric conditions along with data from matched controls. In this overview, we explain the algorithm's principles, summarize measurement reliability studies, and demonstrate two additional aspects (subfield autocorrelation and volume/reliability correlation) with illustrative data. We then explain the rationale for a standardized hippocampal subfield segmentation quality control (QC) procedure for improved pipeline harmonization. To guide researchers to make optimal use of the algorithm, we discuss how global size and age effects can be modeled, how QC steps can be incorporated and how subfields may be aggregated into composite volumes. This discussion is based on a synopsis of 162 published neuroimaging studies (01/2013-12/2019) that applied the FreeSurfer hippocampal subfield segmentation in a broad range of domains including cognition and healthy aging, brain development and neurodegeneration, affective disorders, psychosis, stress regulation, neurotoxicity, epilepsy, inflammatory disease, childhood adversity and posttraumatic stress disorder, and candidate and whole genome (epi-)genetics. Finally, we highlight points where FreeSurfer-based hippocampal subfield studies may be optimized.


Asunto(s)
Hipocampo/anatomía & histología , Hipocampo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Neuroimagen , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Procesamiento de Imagen Asistido por Computador/normas , Imagen por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/normas , Estudios Multicéntricos como Asunto , Neuroimagen/métodos , Neuroimagen/normas , Control de Calidad
2.
Mol Psychiatry ; 26(9): 4839-4852, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-32467648

RESUMEN

Emerging evidence suggests that obesity impacts brain physiology at multiple levels. Here we aimed to clarify the relationship between obesity and brain structure using structural MRI (n = 6420) and genetic data (n = 3907) from the ENIGMA Major Depressive Disorder (MDD) working group. Obesity (BMI > 30) was significantly associated with cortical and subcortical abnormalities in both mass-univariate and multivariate pattern recognition analyses independent of MDD diagnosis. The most pronounced effects were found for associations between obesity and lower temporo-frontal cortical thickness (maximum Cohen´s d (left fusiform gyrus) = -0.33). The observed regional distribution and effect size of cortical thickness reductions in obesity revealed considerable similarities with corresponding patterns of lower cortical thickness in previously published studies of neuropsychiatric disorders. A higher polygenic risk score for obesity significantly correlated with lower occipital surface area. In addition, a significant age-by-obesity interaction on cortical thickness emerged driven by lower thickness in older participants. Our findings suggest a neurobiological interaction between obesity and brain structure under physiological and pathological brain conditions.


Asunto(s)
Trastorno Depresivo Mayor , Anciano , Encéfalo/diagnóstico por imagen , Corteza Cerebral , Trastorno Depresivo Mayor/genética , Humanos , Imagen por Resonancia Magnética , Obesidad/genética , Factores de Riesgo
4.
Psychoneuroendocrinology ; 126: 105148, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33513455

RESUMEN

Novelty seeking (NS) has previously been identified as a personality trait that is associated with elevated body mass index (BMI) and obesity. Of note, both obesity and reduced impulse control - a core feature of NS - have previously been associated with grey matter volume (GMV) reductions in the orbitofrontal cortex (OFC). Yet, it remains unknown, if body weight-related grey matter decline in the OFC might be explained by higher levels of NS. To address this question, we studied associations between NS, BMI and brain structure in 355 healthy subjects. Brain images were pre-processed using voxel-based morphometry (VBM). BMI was calculated from self-reported height and weight. The Tridimensional Personality Questionnaire (TPQ) was used to assess NS. NS and BMI were associated positively (r = .137, p = .01) with NS being a significant predictor of BMI (B = 0.172; SE B = 0.05; ß = 0.184; p = 0.001). Significant associations between BMI and GMV specifically in the OFC (x = -44, y = 56, z = -2, t(350) = 4.34, k = 5, pFWE = 0.011) did not uphold when correcting for NS in the model. In turn, a significant negative association between NS and OFC GMV was found independent of BMI (x = -2, y = 48, z = -10, t(349) = 4.42, k = 88, pFWE = 0.008). Body mass-related grey matter decrease outside the OFC could not be attributed to NS. Our results suggest that body-weight-related orbitofrontal grey matter reduction can at least partly be linked to higher levels of NS. Given the pivotal role of the OFC in overweight as well as cognitive domains such as impulse inhibition, executive control and reward processing, its association with NS seems to provide a tenable neurobiological correlate for future research.


Asunto(s)
Conducta Exploratoria , Sustancia Gris , Sobrepeso , Sustancia Gris/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Obesidad , Aumento de Peso
5.
Neuropsychopharmacology ; 46(8): 1510-1517, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33958703

RESUMEN

We currently observe a disconcerting phenomenon in machine learning studies in psychiatry: While we would expect larger samples to yield better results due to the availability of more data, larger machine learning studies consistently show much weaker performance than the numerous small-scale studies. Here, we systematically investigated this effect focusing on one of the most heavily studied questions in the field, namely the classification of patients suffering from Major Depressive Disorder (MDD) and healthy controls based on neuroimaging data. Drawing upon structural MRI data from a balanced sample of N = 1868 MDD patients and healthy controls from our recent international Predictive Analytics Competition (PAC), we first trained and tested a classification model on the full dataset which yielded an accuracy of 61%. Next, we mimicked the process by which researchers would draw samples of various sizes (N = 4 to N = 150) from the population and showed a strong risk of misestimation. Specifically, for small sample sizes (N = 20), we observe accuracies of up to 95%. For medium sample sizes (N = 100) accuracies up to 75% were found. Importantly, further investigation showed that sufficiently large test sets effectively protect against performance misestimation whereas larger datasets per se do not. While these results question the validity of a substantial part of the current literature, we outline the relatively low-cost remedy of larger test sets, which is readily available in most cases.


Asunto(s)
Trastorno Depresivo Mayor , Depresión , Trastorno Depresivo Mayor/diagnóstico por imagen , Humanos , Aprendizaje Automático , Imagen por Resonancia Magnética , Neuroimagen
6.
Eur Neuropsychopharmacol ; 46: 93-104, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33648793

RESUMEN

Apolipoprotein E (APOE) genotype is the strongest single gene predictor of Alzheimer's disease (AD) and has been frequently associated with AD-related brain structural alterations before the onset of dementia. While previous research has primarily focused on hippocampal morphometry in relation to APOE, sporadic recent findings have questioned the specificity of the hippocampus and instead suggested more global effects on the brain. With the present study we aimed to investigate associations between homozygous APOE ε4 status and cortical gray matter structure as well as white matter microstructure. In our study, we contrasted n = 31 homozygous APOE ε4 carriers (age=34.47 years, including a subsample of n = 12 subjects with depression) with a demographically matched sample without an ε4 allele (resulting total sample: N = 62). Morphometry analyses included a) Freesurfer based cortical segmentations of thickness and surface area measures and b) tract based spatial statistics of DTI measures. We found pronounced and widespread reductions in cortical surface area of ε4 homozygotes in 57 out of 68 cortical brain regions. In contrast, no differences in cortical thickness were observed. Furthermore, APOE ε4 homozygous carriers showed significantly lower fractional anisotropy in the corpus callosum, the right internal and external capsule, the left corona radiata and the right fornix. The present findings support a global rather than regionally specific effect of homozygous APOE ε4 allele status on cortical surface area and white matter microstructure. Future studies should aim to delineate the clinical implications of these findings.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Sustancia Blanca , Adulto , Alelos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Encéfalo/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Genotipo , Homocigoto , Humanos , Imagen por Resonancia Magnética , Sustancia Blanca/diagnóstico por imagen
7.
Neuropsychopharmacology ; 45(10): 1758-1765, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32272482

RESUMEN

Transgender individuals (TIs) show brain-structural alterations that differ from their biological sex as well as their perceived gender. To substantiate evidence that the brain structure of TIs differs from male and female, we use a combined multivariate and univariate approach. Gray matter segments resulting from voxel-based morphometry preprocessing of N = 1753 cisgender (CG) healthy participants were used to train (N = 1402) and validate (20% holdout N = 351) a support-vector machine classifying the biological sex. As a second validation, we classified N = 1104 patients with depression. A third validation was performed using the matched CG sample of the transgender women (TW) application sample. Subsequently, the classifier was applied to N = 26 TW. Finally, we compared brain volumes of CG-men, women, and TW-pre/post treatment cross-sex hormone treatment (CHT) in a univariate analysis controlling for sexual orientation, age, and total brain volume. The application of our biological sex classifier to the transgender sample resulted in a significantly lower true positive rate (TPR-male = 56.0%). The TPR did not differ between CG-individuals with (TPR-male = 86.9%) and without depression (TPR-male = 88.5%). The univariate analysis of the transgender application-sample revealed that TW-pre/post treatment show brain-structural differences from CG-women and CG-men in the putamen and insula, as well as the whole-brain analysis. Our results support the hypothesis that brain structure in TW differs from brain structure of their biological sex (male) as well as their perceived gender (female). This finding substantiates evidence that TIs show specific brain-structural alterations leading to a different pattern of brain structure than CG-individuals.


Asunto(s)
Personas Transgénero , Transexualidad , Femenino , Identidad de Género , Sustancia Gris , Humanos , Imagen por Resonancia Magnética , Masculino
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda