Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Sensors (Basel) ; 17(6)2017 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-28613238

RESUMEN

Both the idea and technology for connecting sensors and actuators to a network to remotely monitor and control physical systems have been known for many years and developed accordingly. However, a little more than a decade ago the concept of the Internet of Things (IoT) was coined and used to integrate such approaches into a common framework. Technology has been constantly evolving and so has the concept of the Internet of Things, incorporating new terminology appropriate to technological advances and different application domains. This paper presents the changes that the IoT has undertaken since its conception and research on how technological advances have shaped it and fostered the arising of derived names suitable to specific domains. A two-step literature review through major publishers and indexing databases was conducted; first by searching for proposals on the Internet of Things concept and analyzing them to find similarities, differences, and technological features that allow us to create a timeline showing its development; in the second step the most mentioned names given to the IoT for specific domains, as well as closely related concepts were identified and briefly analyzed. The study confirms the claim that a consensus on the IoT definition has not yet been reached, as enabling technology keeps evolving and new application domains are being proposed. However, recent changes have been relatively moderated, and its variations on application domains are clearly differentiated, with data and data technologies playing an important role in the IoT landscape.

2.
Sensors (Basel) ; 16(11)2016 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-27792165

RESUMEN

Biosensors are small analytical devices incorporating a biological recognition element and a physico-chemical transducer to convert a biological signal into an electrical reading. Nowadays, their technological appeal resides in their fast performance, high sensitivity and continuous measuring capabilities; however, a full understanding is still under research. This paper aims to contribute to this growing field of biotechnology, with a focus on Glucose-Oxidase Biosensor (GOB) modeling through statistical learning methods from a regression perspective. We model the amperometric response of a GOB with dependent variables under different conditions, such as temperature, benzoquinone, pH and glucose concentrations, by means of several machine learning algorithms. Since the sensitivity of a GOB response is strongly related to these dependent variables, their interactions should be optimized to maximize the output signal, for which a genetic algorithm and simulated annealing are used. We report a model that shows a good generalization error and is consistent with the optimization.


Asunto(s)
Técnicas Biosensibles/métodos , Glucosa Oxidasa/metabolismo , Glucosa/análisis , Aprendizaje Automático , Benzoquinonas/química , Benzoquinonas/metabolismo , Concentración de Iones de Hidrógeno , Análisis de los Mínimos Cuadrados , Temperatura
4.
Materials (Basel) ; 11(10)2018 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-30301133

RESUMEN

The filling of channels in porous media with particles of a material can be interpreted in a first approximation as a packing of spheres in cylindrical recipients. Numerous studies on micro- and nanoscopic scales show that they are, as a rule, not ideal cylinders. In this paper, the channels, which have an irregular shape and a circular cross-section, as well as the packing algorithms are investigated. Five patterns of channel shapes are detected to represent any irregular porous structures. A novel heuristic packing algorithm for monosized spheres and different irregularities is proposed. It begins with an initial configuration based on an fcc unit cell and the subsequent densification of the obtained structure by shaking and gravity procedures. A verification of the algorithm was carried out for nine sinusoidal axisymmetric channels with different Dmin/Dmax ratio by MATLAB® simulations, reaching a packing fraction of at least 0.67 (for sphere diameters of 5%Dmin or less), superior to a random close packing density. The maximum packing fraction was 73.01% for a channel with a ratio of Dmin/Dmax = 0.1 and a sphere size of 5%Dmin. For sphere diameters of 50%Dmin or larger, it was possible to increase the packing factor after applying shaking and gravity movements.

5.
Genes Genet Syst ; 90(6): 343-56, 2016 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-26960968

RESUMEN

Facioscapulohumeral muscular dystrophy (FSHD) is a neuromuscular disorder that shows a preference for the facial, shoulder and upper arm muscles. FSHD affects about one in 20-400,000 people, and no effective therapeutic strategies are known to halt disease progression or reverse muscle weakness or atrophy. Many genes may be incorrectly regulated in affected muscle tissue, but the mechanisms responsible for the progressive muscle weakness remain largely unknown. Although machine learning (ML) has made significant inroads in biomedical disciplines such as cancer research, no reports have yet addressed FSHD analysis using ML techniques. This study explores a specific FSHD data set from a ML perspective. We report results showing a very promising small group of genes that clearly separates FSHD samples from healthy samples. In addition to numerical prediction figures, we show data visualizations and biological evidence illustrating the potential usefulness of these results.


Asunto(s)
Redes Reguladoras de Genes/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Distrofia Muscular Facioescapulohumeral/genética , Algoritmos , Regulación de la Expresión Génica , Humanos , Aprendizaje Automático , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular Facioescapulohumeral/fisiopatología , Mutación , Biosíntesis de Proteínas/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda