Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Phys Condens Matter ; 31(8): 085601, 2019 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-30537684

RESUMEN

In this work two high density functional theory (DFT) correlation methodologies, the so called DFT+U (or GGA+U) implementation and the exact exchange of correlated electrons (EECE), hybrid DFT functional (or one case of hybrid DFT), are tested to determine the mechanical properties of americium-II. For each case, the numeric value of their principal parameter is chosen ([Formula: see text] for the first case and [Formula: see text] for the second one) once the crystalline structure meets all the mechanical stability conditions. The results show that there is a range of values of [Formula: see text] and [Formula: see text] in which both methodologies generate a stable (experimentally correct) non-magnetic ground state, reaching approximately the same numeric value of the set of elastic constants of the cubic structure. However, only for the case of the hybrid functional results it is possible to show how the non-magnetic configuration is energetically favored, as compared to the ferromagnetic configuration. This happens around [Formula: see text], a value in agreement with a previous analysis made under the same methodology for the metal case Am-I. Following a detailed and deep analysis, it is possible to find a close interrelation between the electronic properties of the metal: its distribution of states around the Fermi level, the energy difference between the two possible spin configurations, and the mechanical response of the crystal. Also, it is possible to conclude that the effect of alpha parameter on the [Formula: see text] electrons can be used as a parameter to simulate the presence of an external pressure over the structure. For the comparison, the calculations were performed within the LAPW approximation in DFT as implemented in the WIEN2k code, with a finite deformation method.

3.
J Chem Phys ; 124(5): 054311, 2006 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-16468873

RESUMEN

Calculation including the electron correlation effects is reported for the ground 1 1S and lowest triplet 1 3S state energies of the confined helium atom placed at the center of an impenetrable spherical box. While the adopted wave-functional treatment involves optimization of three nonlinear parameters and 10, 20, and 40 linear coefficients contained in wave functions expressed in a generalized Hylleraas basis set that explicitly incorporates the interelectronic distance r12, via a Slater-type exponent and through polynomial terms entering the expansion, the Kohn-Sham model employed here uses the Perdew and Wang exchange-correlation functional in its spin-polarized version within the local-density approximation (LDA) with and without the self-interaction correction. All these calculations predict a systematic increase in the singlet-triplet energy splitting toward the high confinement regime, i.e., when the box radius is reduced. By using the variational results as benchmark, it is found that the LDA underestimates the singlet-triplet energy splitting, whereas the self-interaction correction overestimates such a quantity.

4.
Phys Rev A ; 46(5): 2330-2336, 1992 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-9908390
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda