Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Biomed Mater Res A ; 112(8): 1286-1304, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38230548

RESUMEN

Cardiovascular disease (CVD) remains to be the leading cause of death globally today and therefore the need for the development of novel therapies has become increasingly important in the cardiovascular field. The mechanism(s) behind the pathophysiology of CVD have been laboriously investigated in both stem cell and bioengineering laboratories. Scientific breakthroughs have paved the way to better mimic cell types of interest in recent years, with the ability to generate any cell type from reprogrammed human pluripotent stem cells. Mimicking the native extracellular matrix using both organic and inorganic biomaterials has allowed full organs to be recapitulated in vitro. In this paper, we will review techniques from both stem cell biology and bioengineering which have been fruitfully combined and have fueled advances in the cardiovascular disease field. We will provide a brief introduction to CVD, reviewing some of the recent studies as related to the role of endothelial cells and endothelial cell dysfunction. Recent advances and the techniques widely used in both bioengineering and stem cell biology will be discussed, providing a broad overview of the collaboration between these two fields and their overall impact on tissue engineering in the cardiovascular devices and implications for treatment of cardiovascular disease.


Asunto(s)
Enfermedades Cardiovasculares , Células Madre Pluripotentes Inducidas , Ingeniería de Tejidos , Humanos , Ingeniería de Tejidos/métodos , Enfermedades Cardiovasculares/terapia , Células Madre Pluripotentes Inducidas/citología , Células Endoteliales/citología , Células Endoteliales/metabolismo , Animales
2.
Sci Adv ; 8(45): eabn6579, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36351019

RESUMEN

Although major organ toxicities frequently arise in patients treated with cytotoxic or targeted cancer therapies, the mechanisms that drive them are poorly understood. Here, we report that vascular endothelial cells (ECs) are more highly primed for apoptosis than parenchymal cells across many adult tissues. Consequently, ECs readily undergo apoptosis in response to many commonly used anticancer agents including cytotoxic and targeted drugs and are more sensitive to ionizing radiation and BH3 mimetics than parenchymal cells in vivo. Further, using differentiated isogenic human induced pluripotent stem cell models of ECs and vascular smooth muscle cells (VSMCs), we find that these vascular cells exhibit distinct drug toxicity patterns, which are linked to divergent therapy-induced vascular toxicities in patients. Collectively, our results demonstrate that vascular cells are highly sensitive to apoptosis-inducing stress across life span and may represent a "weakest link" vulnerability in multiple tissues for development of toxicities.


Asunto(s)
Células Madre Pluripotentes Inducidas , Neoplasias , Adulto , Humanos , Músculo Liso Vascular/fisiología , Células Endoteliales , Longevidad , Células Madre Pluripotentes Inducidas/fisiología , Células Cultivadas , Neoplasias/etiología
3.
Stem Cell Reports ; 14(4): 590-602, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32243843

RESUMEN

We previously discovered in mouse adipocytes an lncRNA (the homolog of human LINC00116) regulating adipogenesis that contains a highly conserved coding region. Here, we show human protein expression of a peptide within LINC00116, and demonstrate that this peptide modulates triglyceride clearance in human adipocytes by regulating lipolysis and mitochondrial ß-oxidation. This gene has previously been identified as mitoregulin (MTLN). We conclude that MTLN has a regulatory role in adipocyte metabolism as demonstrated by systemic lipid phenotypes in knockout mice. We also assert its adipocyte-autonomous phenotypes in both isolated murine adipocytes as well as human stem cell-derived adipocytes. MTLN directly interacts with the ß subunit of the mitochondrial trifunctional protein, an enzyme critical in the ß-oxidation of long-chain fatty acids. Our human and murine models contend that MTLN could be an avenue for further therapeutic research, albeit not without caveats, for example, by promoting white adipocyte triglyceride clearance in obese subjects.


Asunto(s)
Adipocitos/metabolismo , Proteínas Mitocondriales/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Respiración de la Célula , Secuencia Conservada , Metabolismo Energético , Humanos , Metabolismo de los Lípidos , Lípidos/sangre , Ratones Noqueados , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Oxidación-Reducción
4.
Cell Stem Cell ; 27(1): 147-157.e7, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32413331

RESUMEN

Although susceptibility to cardiovascular disease (CVD) is different for every patient, why some patients with type 2 diabetes mellitus (T2DM) develop CVD while others are protected has not yet been clarified. Using T2DM-patient-derived human induced pluripotent stem cells (hiPSCs), we found that in patients protected from CVD, there was significantly elevated expression of an esterase, arylacetamide deacetylase (AADAC), in vascular smooth muscle cells (VSMCs). We overexpressed this esterase in human primary VSMCs and VSMCs differentiated from hiPSCs and observed that the number of lipid droplets was significantly diminished. Further metabolomic analyses revealed a marked reduction in storage lipids and an increase in membrane phospholipids, suggesting changes in the Kennedy pathway of lipid bioassembly. Cell migration and proliferation were also significantly decreased in AADAC-overexpressing VSMCs. Moreover, apolipoprotein E (Apoe)-knockout mice overexpressing VSMC-specific Aadac showed amelioration of atherosclerotic lesions. Our findings suggest that higher AADAC expression in VSMCs protects T2DM patients from CVD.


Asunto(s)
Aterosclerosis , Diabetes Mellitus Tipo 2 , Células Madre Pluripotentes Inducidas , Animales , Proliferación Celular , Células Cultivadas , Humanos , Ratones , Ratones Endogámicos C57BL , Músculo Liso Vascular , Miocitos del Músculo Liso
5.
Cell Stem Cell ; 20(4): 547-557.e7, 2017 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-28388431

RESUMEN

Genome-wide association studies (GWAS) have highlighted a large number of genetic variants with potential disease association, but functional analysis remains a challenge. Here we describe an approach to functionally validate identified variants through differentiation of induced pluripotent stem cells (iPSCs) to study cellular pathophysiology. We collected peripheral blood cells from Framingham Heart Study participants and reprogrammed them to iPSCs. We then differentiated 68 iPSC lines into hepatocytes and adipocytes to investigate the effect of the 1p13 rs12740374 variant on cardiometabolic disease phenotypes via transcriptomics and metabolomic signatures. We observed a clear association between rs12740374 and lipid accumulation and gene expression in differentiated hepatocytes, in particular, expression of SORT1, CELSR2, and PSRC1, consistent with previous analyses of this variant using other approaches. Initial investigation of additional SNPs also highlighted correlations with gene expression. These findings suggest that iPSC-based population studies hold promise as tools for the functional validation of GWAS variants.


Asunto(s)
Diferenciación Celular/genética , Estudio de Asociación del Genoma Completo , Células Madre Pluripotentes Inducidas/citología , Enfermedades Metabólicas/genética , Adipocitos Blancos/citología , Adipocitos Blancos/metabolismo , Reprogramación Celular/genética , Cromosomas Humanos Par 1/genética , Estudios de Cohortes , Regulación hacia Abajo/genética , Genotipo , Hepatocitos/citología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Leucocitos Mononucleares/metabolismo , Metabolismo de los Lípidos/genética , Metabolómica , Modelos Genéticos , Fenotipo , Sitios de Carácter Cuantitativo/genética , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN , Donantes de Tejidos , Transcriptoma/genética
7.
Nat Cell Biol ; 17(8): 994-1003, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26214132

RESUMEN

The use of human pluripotent stem cells for in vitro disease modelling and clinical applications requires protocols that convert these cells into relevant adult cell types. Here, we report the rapid and efficient differentiation of human pluripotent stem cells into vascular endothelial and smooth muscle cells. We found that GSK3 inhibition and BMP4 treatment rapidly committed pluripotent cells to a mesodermal fate and subsequent exposure to VEGF-A or PDGF-BB resulted in the differentiation of either endothelial or vascular smooth muscle cells, respectively. Both protocols produced mature cells with efficiencies exceeding 80% within six days. On purification to 99% via surface markers, endothelial cells maintained their identity, as assessed by marker gene expression, and showed relevant in vitro and in vivo functionality. Global transcriptional and metabolomic analyses confirmed that the cells closely resembled their in vivo counterparts. Our results suggest that these cells could be used to faithfully model human disease.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Células Endoteliales/fisiología , Células Madre Pluripotentes Inducidas/fisiología , Músculo Liso Vascular/fisiología , Miocitos del Músculo Liso/fisiología , Animales , Becaplermina , Biomarcadores/metabolismo , Proteína Morfogenética Ósea 4/farmacología , Diferenciación Celular/efectos de los fármacos , Línea Celular , Linaje de la Célula/efectos de los fármacos , Técnicas de Cocultivo , Relación Dosis-Respuesta a Droga , Células Endoteliales/efectos de los fármacos , Células Endoteliales/enzimología , Células Endoteliales/trasplante , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Células Endoteliales de la Vena Umbilical Humana/fisiología , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/enzimología , Células Madre Pluripotentes Inducidas/trasplante , Metabolómica/métodos , Ratones Endogámicos NOD , Ratones SCID , Músculo Liso Vascular/citología , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/enzimología , Músculo Liso Vascular/trasplante , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/enzimología , Miocitos del Músculo Liso/trasplante , Neovascularización Fisiológica , Fenotipo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-sis/farmacología , Factores de Tiempo , Transcripción Genética , Transfección , Factor A de Crecimiento Endotelial Vascular/farmacología , Vía de Señalización Wnt/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda