Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Ann Rheum Dis ; 81(2): 193-205, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34598926

RESUMEN

OBJECTIVES: This study investigates pathogenic and protective polyfunctional T-cell responses in patient with rheumatoid arthritis (RA), individuals at risk (IAR) and healthy control (HC) synovial-tissue biopsies and identifies the presence of a novel population of pathogenic polyfunctional T-cells that are enriched in the RA joint prior to the development of clinical inflammation. METHODS: Pathway enrichment analysis of previously obtained RNAseq data of synovial biopsies from RA (n=118), IAR (n=20) and HC (n=44) was performed. Single-cell synovial tissue suspensions from RA (n=10), IAR (n=7) and HC (n=7) and paired peripheral blood mononuclear cells (PBMC) were stimulated in vitro and polyfunctional synovial T-cell subsets examined by flow cytometric analysis, simplified presentation of incredibly complex evaluations (SPICE) and FlowSom clustering. Flow-imaging was utilised to confirm specific T-cell cluster identification. Fluorescent lifetime imaging microscopy (FLIM) was used to visualise metabolic status of sorted T-cell populations. RESULTS: Increased plasticity of Tfh cells and CD4 T-cell polyfunctionality with enriched memory Treg cell responses was demonstrated in RA patient synovial tissue. Synovial-tissue RNAseq analysis reveals that enrichment in T-cell activation and differentiation pathways pre-dates the onset of RA. Switch from potentially protective IL-4 and granulocyte macrophage colony stimulating factor (GMCSF) dominated polyfunctional CD4 T-cell responses towards pathogenic polyfunctionality is evident in patient with IAR and RA synovial tissue. Cluster analysis reveals the accumulation of highly polyfunctional CD4+ CD8dim T-cells in IAR and RA but not HC synovial tissue. CD4+ CD8dim T-cells show increased utilisation of oxidative phosphorylation, a characteristic of metabolically primed memory T-cells. Frequency of synovial CD4+ CD8dim T-cells correlates with RA disease activity. CONCLUSION: Switch from potentially protective to pathogenic T-cell polyfunctionality pre-dates the onset of clinical inflammation and constitutes an opportunity for therapeutic intervention in RA.


Asunto(s)
Artritis Reumatoide/inmunología , Membrana Sinovial/inmunología , Subgrupos de Linfocitos T/inmunología , Linfocitos T/inmunología , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Síntomas Prodrómicos
2.
Ann Rheum Dis ; 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35701153

RESUMEN

OBJECTIVES: Immune and stromal cell communication is central in the pathogenesis of rheumatoid arthritis (RA) and psoriatic arthritis (PsA), however, the nature of these interactions in the synovial pathology of the two pathotypes can differ. Identifying immune-stromal cell crosstalk at the site of inflammation in RA and PsA is challenging. This study creates the first global transcriptomic analysis of the RA and PsA inflamed joint and investigates immune-stromal cell interactions in the pathogenesis of synovial inflammation. METHODS: Single cell transcriptomic profiling of 178 000 synovial tissue cells from five patients with PsA and four patients with RA, importantly, without prior sorting of immune and stromal cells. This approach enabled the transcriptomic analysis of the intact synovial tissue and identification of immune and stromal cell interactions. State of the art data integration and annotation techniques identified and characterised 18 stromal and 14 immune cell clusters. RESULTS: Global transcriptomic analysis of synovial cell subsets identifies actively proliferating synovial T cells and indicates that due to differential λ and κ immunoglobulin light chain usage, synovial plasma cells are potentially not derived from the local memory B cell pool. Importantly, we report distinct fibroblast and endothelial cell transcriptomes indicating abundant subpopulations in RA and PsA characterised by differential transcription factor usage. Using receptor-ligand interactions and downstream target characterisation, we identify RA-specific synovial T cell-derived transforming growth factor (TGF)-ß and macrophage interleukin (IL)-1ß synergy in driving the transcriptional profile of FAPα+THY1+ invasive synovial fibroblasts, expanded in RA compared with PsA. In vitro characterisation of patient with RA synovial fibroblasts showed metabolic switch to glycolysis, increased adhesion intercellular adhesion molecules 1 expression and IL-6 secretion in response to combined TGF-ß and IL-1ß treatment. Disrupting specific immune and stromal cell interactions offers novel opportunities for targeted therapeutic intervention in RA and PsA.

3.
Allergy ; 75(12): 3216-3227, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32644214

RESUMEN

BACKGROUND: Atopic dermatitis (AD) is associated with a dysregulation of the skin barrier and may predispose to the development of secondary allergic conditions, such as asthma. Tmem79ma/ma mice harbor a mutation in the gene encoding Transmembrane Protein 79 (or Mattrin), which has previously been associated with AD. As a result of the Tmem79 gene mutation, these mice have a defective skin barrier and develop spontaneous skin inflammation. In this study, Tmem79ma/ma mice were assessed for the underlying immunological response in the development of spontaneous skin and lung inflammation. METHODS: Development of spontaneous skin and lung inflammation in Tmem79ma/ma mice was analyzed. We further investigated susceptibility to cutaneous Staphylococcus aureus infection. Tmem79ma/ma were crossed to IL-17A-deficient mice to address the contribution of IL-17A to spontaneous skin and lung disease. RESULTS: Tmem79ma/ma mice developed IL-17A-dependent spontaneous AD-like inflammation and were refractory to S aureus infection. Mutant mice progressed to airway inflammation subsequent to the occurrence of dermatitis. The progression from skin to lung disease is dependent on adaptive immunity and is facilitated by cutaneous expansion of Th17 and TCRγδ T cells. CONCLUSION: Mice lacking Tmem79/Mattrin expression have a defective skin barrier. In adulthood, these mice develop dermatitis with secondary progression to lung inflammation. The development of skin and lung inflammation is IL-17A-dependent and mediated by TCRγδ T cells.


Asunto(s)
Dermatitis Atópica , Interleucina-17 , Neumonía , Animales , Dermatitis Atópica/genética , Modelos Animales de Enfermedad , Interleucina-17/genética , Proteínas de la Membrana/genética , Ratones , Neumonía/genética , Piel
4.
Infect Immun ; 87(8)2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31138616

RESUMEN

Infection with parasite helminths induces potent modulation of the immune system of the host. Epidemiological and animal studies have shown that helminth infections can suppress or exacerbate unrelated autoimmune, allergic, and other inflammatory disorders. There is growing evidence that helminth infection-mediated suppression of bystander inflammatory responses is influenced by alterations in the intestinal microbiome modulating metabolic and immune functions of the infected host. We analyzed the fecal microbiota of mice infected with adult male Schistosoma mansoni worms, which are less susceptible to experimental colitis, and male- and female-worm-infected mice, which are highly sensitive to colitis. While both groups of infected mice developed a disrupted microbiota, there were marked alterations in mice with male and female worm infections. Antibiotic-treated recipients that were cohoused with both types of S. mansoni worm-infected mice acquired a colitogenic microbiome, leading to increased susceptibility to experimental colitis. Following anthelmintic treatment to remove worms from worm-only-infected mice, the mice developed exacerbated colitis. This study provides evidence that adult male S. mansoni worm infection modulates the host's immune system and suppresses bystander colitis while limiting dysbiosis of the host's intestinal microbiome during infection.


Asunto(s)
Colitis/prevención & control , Microbioma Gastrointestinal , Esquistosomiasis mansoni/inmunología , Animales , Susceptibilidad a Enfermedades , Femenino , Masculino , Ratones , Ratones Endogámicos BALB C , Esquistosomiasis mansoni/microbiología
5.
Allergy ; 74(10): 1920-1933, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30937919

RESUMEN

BACKGROUND: Atopic dermatitis (AD) is one of the most common skin diseases with a multifactorial etiology. Mutations leading to loss of skin barrier function are associated with the development of AD with group 2 innate lymphoid cells (ILC2) promoting acute skin inflammation. Filaggrin-mutant (Flgft/ft ) mice develop spontaneous skin inflammation accompanied by an increase in skin ILC2 numbers, IL-1ß production, and other cytokines recapitulating human AD. Here, we investigated the role of ILC2, effector cytokines, inflammasome activation, and mast cell function on the development of chronic AD-like inflammation in mice. METHODS: Mice with a frameshift mutation in the filaggrin gene develop spontaneous dermatitis. Flgft/ft mice were crossed to cell- or cytokine-deficient mouse strains, or bred under germ-free conditions. Skin inflammation was scored, and microbiome composition was analyzed. Skin protein expression was measured by multiplex immunoassay. Infiltrating cells were analyzed by flow cytometry. RESULTS: Wild-type and Flgft/ft mice significantly differ in their microbiome composition. Furthermore, mutant mice do not develop skin inflammation under germ-free conditions. ILC2 deficiency did not ameliorate chronic dermatitis in Flgft/ft mice, which was also independent of IL-4, IL-5, IL-9, IL-13, IL-17A, and IL-22. Inflammation was independent of NLRP3 inflammasome activation but required IL-1ß and IL-1R1-signaling. Mechanistically, IL-1ß promoted hyperactivation of IL-1R1-expressing mast cells. Treatment with anti-IL-1ß-antibody alleviated dermatitis exacerbation, while antibiotic intervention ameliorated dermatitis in neonatal mice but not in adults with established inflammation. CONCLUSIONS: In summary, we identified a critical role for the microbiome and IL-1ß mediating chronic inflammation in mice with an impaired skin barrier.


Asunto(s)
Dermatitis Atópica/inmunología , Dermatitis Atópica/metabolismo , Inmunidad Innata , Interleucina-1beta/metabolismo , Linfocitos/inmunología , Linfocitos/metabolismo , Animales , Biopsia , Citocinas/metabolismo , Dermatitis Atópica/patología , Modelos Animales de Enfermedad , Proteínas Filagrina , Inflamasomas/metabolismo , Linfocitos/patología , Mastocitos/inmunología , Mastocitos/metabolismo , Ratones , Ratones Transgénicos , Microbiota , Fenotipo , Transducción de Señal , Piel/inmunología , Piel/metabolismo , Piel/patología
6.
J Immunol ; 199(2): 707-717, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28615416

RESUMEN

Atopic dermatitis (AD) is a common inflammatory skin disease affecting up to 20% of children and 3% of adults worldwide and is associated with dysregulation of the skin barrier. Although type 2 responses are implicated in AD, emerging evidence indicates a potential role for the IL-17A signaling axis in AD pathogenesis. In this study we show that in the filaggrin mutant mouse model of spontaneous AD, IL-17RA deficiency (Il17ra-/- ) resulted in severe exacerbation of skin inflammation. Interestingly, Il17ra-/- mice without the filaggrin mutation also developed spontaneous progressive skin inflammation with eosinophilia, as well as increased levels of thymic stromal lymphopoietin (TSLP) and IL-5 in the skin. Il17ra-/- mice have a defective skin barrier with altered filaggrin expression. The barrier dysregulation and spontaneous skin inflammation in Il17ra-/- mice was dependent on TSLP, but not the other alarmins IL-25 and IL-33. The associated skin inflammation was mediated by IL-5-expressing pathogenic effector Th2 cells and was independent of TCRγδ T cells and IL-22. An absence of IL-17RA in nonhematopoietic cells, but not in the hematopoietic cells, was required for the development of spontaneous skin inflammation. Skin microbiome dysbiosis developed in the absence of IL-17RA, with antibiotic intervention resulting in significant amelioration of skin inflammation and reductions in skin-infiltrating pathogenic effector Th2 cells and TSLP. This study describes a previously unappreciated protective role for IL-17RA signaling in regulation of the skin barrier and maintenance of skin immune homeostasis.


Asunto(s)
Dermatitis Atópica/inmunología , Receptores de Interleucina-17/inmunología , Receptores de Interleucina-17/metabolismo , Piel/crecimiento & desarrollo , Piel/patología , Animales , Citocinas/inmunología , Dermatitis Atópica/patología , Modelos Animales de Enfermedad , Disbiosis , Eosinofilia/inmunología , Proteínas Filagrina , Regulación de la Expresión Génica , Homeostasis , Interleucina-33/inmunología , Interleucina-5/genética , Interleucina-5/inmunología , Interleucinas/genética , Interleucinas/inmunología , Proteínas de Filamentos Intermediarios/deficiencia , Proteínas de Filamentos Intermediarios/genética , Ratones , Microbiota , Mutación , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Receptores de Interleucina-17/deficiencia , Receptores de Interleucina-17/genética , Transducción de Señal , Piel/inmunología , Piel/microbiología , Células Th2/inmunología , Linfopoyetina del Estroma Tímico , Interleucina-22
8.
J Allergy Clin Immunol ; 137(2): 482-91, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26299987

RESUMEN

BACKGROUND: Atopic dermatitis (AD) is an inflammatory skin condition that can occur in early life, predisposing to asthma development in a phenomenon known as the atopic march. Although genetic and environmental factors are known to contribute to AD and asthma, the mechanisms underlying the atopic march remain poorly understood. Filaggrin loss-of-function mutations are a major genetic predisposer for the development of AD and progression to AD-associated asthma. OBJECTIVE: We sought to experimentally address whether filaggrin mutations in mice lead to the development of spontaneous eczematous inflammation and address the aberrant immunologic milieu arising in a mouse model of filaggrin deficiency. METHODS: Filaggrin mutant mice were generated on the proallergic BALB/c background, creating a novel model for the assessment of spontaneous AD-like inflammation. Independently recruited AD case collections were analyzed to define associations between filaggrin mutations and immunologic phenotypes. RESULTS: Filaggrin-deficient mice on a BALB/c background had profound spontaneous AD-like inflammation with progression to compromised pulmonary function with age, reflecting the atopic march in patients with AD. Strikingly, skin inflammation occurs independently of adaptive immunity and is associated with cutaneous expansion of IL-5-producing type 2 innate lymphoid cells. Furthermore, subjects with filaggrin mutations have an increased frequency of type 2 innate lymphoid cells in the skin in comparison with control subjects. CONCLUSION: This study provides new insights into our understanding of the atopic march, with innate immunity initiating dermatitis and the adaptive immunity required for subsequent development of compromised lung function.


Asunto(s)
Inmunidad Adaptativa , Dermatitis Atópica/complicaciones , Dermatitis Atópica/inmunología , Inmunidad Innata , Neumonía/etiología , Animales , Dermatitis Atópica/genética , Dermatitis Atópica/patología , Modelos Animales de Enfermedad , Proteínas Filagrina , Proteínas de Filamentos Intermediarios/deficiencia , Proteínas de Filamentos Intermediarios/genética , Linfocitos/inmunología , Linfocitos/metabolismo , Linfocitos/patología , Ratones , Ratones Transgénicos , Mutación , Fenotipo , Neumonía/patología , Piel/inmunología , Piel/metabolismo , Piel/patología
9.
J Clin Immunol ; 36 Suppl 1: 25-33, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27008462

RESUMEN

Regulatory B (Breg) cells are important regulators of immune responses and in recent years our understanding of their phenotypical and functional characteristics has improved considerably. Initially all suppressive capabilities of Breg cells were attributed to the actions of the anti-inflammatory cytokine interleukin (IL)-10 secreted by Breg cells. Recent studies however, highlight additional and novel mechanisms that influence both the expansion of Breg cells and their capacity to suppress immunity. Here we provide an overview of the complexity of Breg cell populations and address the newly discovered IL-10 independent mechanisms of Breg cell expansion and immune-suppression.


Asunto(s)
Linfocitos B Reguladores/inmunología , Linfocitos B Reguladores/metabolismo , Inmunomodulación , Interleucina-10/metabolismo , Animales , Comunicación Celular , Diferenciación Celular , Citocinas/metabolismo , Regulación de la Expresión Génica , Humanos , Terapia de Inmunosupresión , Inmunoterapia/métodos , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Depleción Linfocítica , Ratones , Transducción de Señal
10.
Immunology ; 141(1): 70-8, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24032649

RESUMEN

The majority of studies examining antigen-presenting cell (APC) function have focused on the capture and presentation of antigens released from pathogens or damaged cells. However, antigen-specific B cells are also capable of efficiently extracting antigens that are either tethered to, or integrally part of the plasma membrane of various target cells. In this study we show that B cells are also highly efficient at extracting integral components of the extracellular matrix (ECM) for subsequent presentation. In particular we demonstrate that B cells specific for aggrecan, an integral component of cartilage ECM, acquire this rheumatoid arthritis candidate autoantigen in both a B-cell-receptor-dependent and a contact-dependent manner. We also demonstrate that the subsequent presentation of aggregan from ECM leads to CD4(+) T-cell activation and effector cell formation. Recent studies have identified B-cell-mediated antigen presentation as essential for the development of autoimmunity, but a unique role for B cells compared with other APC has yet to be defined. Our findings lead us to propose that the acquisition of ECM-derived autoantigens represents a mechanism that defines the APC requirement for B cells in the development of autoimmunity.


Asunto(s)
Agrecanos/inmunología , Presentación de Antígeno , Autoantígenos/inmunología , Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Cartílago/inmunología , Matriz Extracelular/inmunología , Activación de Linfocitos , Animales , Artritis Reumatoide/inmunología , Artritis Reumatoide/patología , Linfocitos B/patología , Linfocitos T CD4-Positivos/patología , Cartílago/patología , Bovinos , Línea Celular Tumoral , Matriz Extracelular/patología , Humanos , Ratones
11.
Comput Struct Biotechnol J ; 21: 4009-4020, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37649712

RESUMEN

Inflammatory arthritis, including rheumatoid (RA), and psoriatic (PsA) arthritis, are clinically and immunologically heterogeneous diseases with no identified cure. Chronic inflammation of the synovial tissue ushers loss of function of the joint that severely impacts the patient's quality of life, eventually leading to disability and life-threatening comorbidities. The pathogenesis of synovial inflammation is the consequence of compounded immune and stromal cell interactions influenced by genetic and environmental factors. Deciphering the complexity of the synovial cellular landscape has accelerated primarily due to the utilisation of bulk and single cell RNA sequencing. Particularly the capacity to generate cell-cell interaction networks could reveal evidence of previously unappreciated processes leading to disease. However, there is currently a lack of universal nomenclature as a result of varied experimental and technological approaches that discombobulates the study of synovial inflammation. While spatial transcriptomic analysis that combines anatomical information with transcriptomic data of synovial tissue biopsies promises to provide more insights into disease pathogenesis, in vitro functional assays with single-cell resolution will be required to validate current bioinformatic applications. In order to provide a comprehensive approach and translate experimental data to clinical practice, a combination of clinical and molecular data with machine learning has the potential to enhance patient stratification and identify individuals at risk of arthritis that would benefit from early therapeutic intervention. This review aims to provide a comprehensive understanding of the effect of computational approaches in deciphering synovial inflammation pathogenesis and discuss the impact that further experimental and novel computational tools may have on therapeutic target identification and drug development.

12.
BMJ Open Sport Exerc Med ; 9(4): e001636, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37937309

RESUMEN

Objective: To investigate cardiovascular risk factors' prevalence and association with systemic inflammation in professional male rugby players (RP). Methods: A cross-sectional investigation of 46 professional male RP (26.1±4.1 years) cardiovascular risk factors were compared by position. Inflammatory markers were compared with healthy controls (n=13) and patients with rheumatoid arthritis (RA) (n=10). Results: Twenty-six per cent of RP had no risk factors, 49% had 1-2 cardiovascular risk factors and 25% had 3-4 risk factors. Forwards had greater body fat (p<0.001), visceral fat (p<0.001), glucose (p=0.025), and C reactive protein (CRP) (p=0.023) compared with backs. RP demonstrated more favourable lipid and glucose profiles than reference values for the general population. Most RP (n=28, 61%) had elevated blood pressure (≥140/90 mm Hg). RP had higher vascular adhesion molecule-1 (VCAM-1) (p=0.004) and intracellular adhesion molecule-1 (ICAM-1) (p=0.002) than healthy controls. RP had lower CRP than patients with RA (p=0.009), while one-third (n=15) displayed equivalent ICAM-1 and VCAM-1 levels. Multivariate clustering and principal component analysis biplots revealed higher triglycerides, inflammatory markers, and worse body composition were associated with forwards. Conclusions: Despite athletic status, most of this rugby cohort had at least one cardiovascular risk factor. Concomitantly, these RP demonstrated increased levels of inflammation, with one-third, primarily forwards, displaying equivalent levels to patients with inflammatory disease. Further studies are needed to unravel the prognostic implications of increased inflammation in RP because unchecked, chronic inflammation may lead to increased cardiovascular disease risk.

13.
Stem Cells Transl Med ; 12(12): 849-862, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37934808

RESUMEN

Currently available therapies for rheumatoid arthritis (RA) are inadequate to alleviate the inflammation and reduce joint damage. While the immune-regulatory effect of human mesenchymal/stromal stem cells (MSCs) extracellular vesicles (EVs) has been tested in many inflammation-related diseases, little is known regarding their effect on patients with RA. Thus, we assessed the effect of human MSCs and MSC-EVs (from naïve or IFN-ß-primed MSCs) on CD4+ T cells from patients with RA. Moreover, we investigated the effect of MSC-EVs on RA patients-derived synovial fibroblasts (FLS). MSC-EVs were prepared using a PEG precipitation followed by ultracentrifugation-based protocol. Applied to RA CD4+ T cells, EVs from IFN-ß-primed MSCs, suppressed the expression of more key RA-associated cytokines (IL-4, GM-CSF IFN-γ, IL-2, TNF-α), and decreased CD4+ T-cell polyfunctionality than MSCs or EVs from naïve MSCs. MSCs mediated a slight decrease in the frequency of T-regulatory cells, while MSC-EVs rescued the frequency of T-regulatory cells. MSCs significantly inhibited CD4+ T-cell proliferation (P < .05), while no inhibition was observed in response to EV preparations. EVs from IFN-ß-primed MSCs inhibited (P < .01) RA FLS migration and downregulated (P < .05) RA FLS surface markers CD34 and HLA-DR. Collectively, we demonstrated the immune-modulatory function of MSCs and their derived EVs in RA CD4+ T cells, which could be further enhanced by priming MSCs with IFN-ß. Moreover, EVs from IFN-ß-primed MSCs more efficiently inhibit RA FLS migration, and expression of RA FLS-related surface markers, suggesting these EVs as a potent therapy for RA.


Asunto(s)
Artritis Reumatoide , Vesículas Extracelulares , Humanos , Vesículas Extracelulares/metabolismo , Artritis Reumatoide/terapia , Citocinas/metabolismo , Inflamación/metabolismo , Células Madre/metabolismo
14.
Front Immunol ; 14: 1277267, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38162654

RESUMEN

Endothelial cell (EC) dysfunction is a hallmark of Systemic Lupus Erythematosus (SLE) and Tie2 is a receptor essential for vascular stability. Inflammatory processes promote inhibition of Tie2 homeostatic activation, driving vascular dysfunction. In this work we determined whether type I Interferons (IFN) induce Tie2 signalling-mediated endothelial dysfunction in patients with SLE. Serum levels of Angiopoietin (Ang)-1, Ang-2 and soluble (s)Tie1 in patients with SLE and healthy controls were measured by ELISA. Monocytes from patients with SLE and Human Umbilical Vein EC (HUVEC) were stimulated with IFN-α, IFN-ß (1000 I.U.) or SLE serum (20%). mRNA and protein expression, phosphorylation and translocation were determined by quantitative PCR, ELISA, Western Blot, flow cytometry and confocal microscopy. Viability and angiogenic capacity were determined by calcein and tube formation assays. We found that sTie1 and Ang-2 serum levels were increased and Ang-1 decreased in patients with SLE and were associated with clinical characteristics. Type I IFN significantly decreased Ang-1 and increased Ang-2 in monocytes from patients with SLE. Type I IFN increased sTie1 and Ang-2 secretion and reduced Tie2 activation in HUVEC. Functionally, type I IFN significantly reduced EC viability and impaired angiogenesis in a Tie2 signalling-dependent manner. Finally, SLE serum increased Ang-2 and sTie1 secretion and significantly decreased tube formation. Importantly, Tie1 and IFNAR1 knockdown reversed these effects in tube formation. Overall, type I IFN play an important role in the stability of EC by inhibiting Tie2 signalling, suggesting that these processes may be implicated in the cardiovascular events observed in patients with SLE.


Asunto(s)
Interferón Tipo I , Lupus Eritematoso Sistémico , Receptor TIE-2 , Humanos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Interferón Tipo I/farmacología , Receptor TIE-2/metabolismo , Transducción de Señal
15.
Nat Rev Rheumatol ; 18(7): 398-414, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35440762

RESUMEN

Activation of endothelium and immune cells is fundamental to the initiation of autoimmune diseases such as rheumatoid arthritis (RA), and it results in trans-endothelial cell migration and synovial fibroblast proliferation, leading to joint destruction. In RA, the synovial microvasculature is highly dysregulated, resulting in inefficient oxygen perfusion to the synovium, which, along with the high metabolic demands of activated immune and stromal cells, leads to a profoundly hypoxic microenvironment. In inflamed joints, infiltrating immune cells and synovial resident cells have great requirements for energy and nutrients, and they adapt their metabolic profiles to generate sufficient energy to support their highly activated inflammatory states. This shift in metabolic capacity of synovial cells enables them to produce the essential building blocks to support their proliferation, activation and invasiveness. Furthermore, it results in the accumulation of metabolic intermediates and alteration of redox-sensitive pathways, affecting signalling pathways that further potentiate the inflammatory response. Importantly, the inflamed synovium is a multicellular tissue, with cells differing in their metabolic requirements depending on complex cell-cell interactions, nutrient supply, metabolic intermediates and transcriptional regulation. Therefore, understanding the complex interplay between metabolic and inflammatory pathways in synovial cells in RA will provide insight into the underlying mechanisms of disease pathogenesis.


Asunto(s)
Artritis Reumatoide , Sinoviocitos , Humanos , Hipoxia/metabolismo , Transducción de Señal , Membrana Sinovial/metabolismo , Sinoviocitos/metabolismo
16.
Front Med (Lausanne) ; 9: 830998, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35372383

RESUMEN

Inflammatory arthritis is a chronic systemic autoimmune disease of unknown etiology, which affects the joints. If untreated, these diseases can have a detrimental effect on the patient's quality of life, leading to disabilities, and therefore, exhibit a significant socioeconomic impact and burden. While studies of immune cell populations in arthritis patient's peripheral blood have been informative regarding potential immune cell dysfunction and possible patient stratification, there are considerable limitations in identifying the early events that lead to synovial inflammation. The joint, as the site of inflammation and the local microenvironment, exhibit unique characteristics that contribute to disease pathogenesis. Understanding the contribution of immune and stromal cell interactions within the inflamed joint has been met with several technical challenges. Additionally, the limited availability of synovial tissue biopsies is a key incentive for the utilization of high-throughput techniques in order to maximize information gain. This review aims to provide an overview of key methods and novel techniques that are used in the handling, processing and analysis of synovial tissue biopsies and the potential synergy between these techniques. Herein, we describe the utilization of high dimensionality flow cytometric analysis, single cell RNA sequencing, ex vivo functional assays and non-intrusive metabolic characterization of synovial cells on a single cell level based on fluorescent lifetime imaging microscopy. Additionally, we recommend important points of consideration regarding the effect of different storage and handling techniques on downstream analysis of synovial tissue samples. The introduction of new powerful techniques in the study of synovial tissue inflammation, brings new challenges but importantly, significant opportunities. Implementation of novel approaches will accelerate our path toward understanding of the mechanisms involved in the pathogenesis of inflammatory arthritis and lead to the identification of new avenues of therapeutic intervention.

17.
BMC Rheumatol ; 5(1): 1, 2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33423684

RESUMEN

The activation of antigen specific T cells during an immune response is a tightly regulated process at the level of both costimulatory and coinhibitory receptors. One such coinhibitory receptor or checkpoint inhibitor which has received much attention in the field of oncology is the programmed cell death protein 1 (PD-1). Blockade of PD-1 or its ligand PD-L1 has proven successful in the treatment of a wide variety of cancers, therefore highlighting an important role for this pathway in anti-tumour immune responses. However, a caveat of PD-1 therapy and boosting anti-tumour immune responses is the development of self-reactive T cells which can lead to the induction of various autoimmune or inflammatory diseases, referred to as immune- related adverse events (irAEs). The emergence of rheumatological irAEs such as Inflammatory Arthritis (IA) in recent years has highlighted the importance of PD-1 in maintaining self-tolerance. Furthermore, the emergence of rheumatology related irAEs raises an important question as to how defects in this pathway can contribute to spontaneous rheumatological disease. In this review, we describe the biological distribution, function and regulation of the PD-1 pathway, its potential role in IA and irAE related IA.

18.
BMJ Case Rep ; 14(2)2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33541985

RESUMEN

Immune checkpoint inhibitors have revolutionised cancer treatment; however, immune-related adverse events do occur, with up to 7% developing inflammatory arthritis. Common rheumatoid arthritis therapies such as methotrexate, prednisolone and biologics have been used to treat this arthritis in small, uncontrolled case series with varying success. In this case of personalised medicine, we report the first use of tofacitinib, a small molecular inhibitor of the Janus kinase-signal transducer and activator of transcription pathway, to treat checkpoint inhibitor-related inflammatory arthritis. This resulted in a rapid clinical response and complete, sustained remission of the arthritis with associated marked reduction in synovial molecular and cellular immune response.


Asunto(s)
Artritis Reumatoide/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico , Piperidinas/uso terapéutico , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirimidinas/uso terapéutico , Artritis Reumatoide/patología , Humanos , Neoplasias Pulmonares , Masculino , Persona de Mediana Edad , Medicina de Precisión
19.
Cells ; 10(3)2021 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-33799480

RESUMEN

Rheumatoid arthritis (RA) is a progressive erosive autoimmune disease that affects 1% of the world population. Anti-citrullinated protein autoantibodies (ACPA) are routinely used for the diagnosis of RA, however 20-30% of patients are ACPA negative. ACPA status is a delineator of RA disease endotypes with similar clinical manifestation but potentially different pathophysiology. Profiling of key peripheral blood and synovial tissue immune populations including B cells, T follicular helper (Tfh) cells and CD4 T cell proinflammatory cytokine responses could elucidate the underlying immunological mechanisms involved and inform a treat to target approach for both ACPA-positive and ACPA-negative RA. Detailed high dimensionality flow cytometric analysis with supervised and unsupervised algorithm analysis revealed unique RA patient peripheral blood B cell and Tfh cell profiles. Synovial tissue single cell analysis of B cell subpopulation distribution was similar between ACPA- and ACPA+ RA patients, highlighting a key role for specific B cell subsets in both disease endotypes. Interestingly, synovial tissue single cell analysis of CD4 T cell proinflammatory cytokine production was markedly different between ACPA- and APCA+ RA patients. RNAseq analysis of RA patient synovial tissue highlighted disease endotype specific gene signatures. ACPA status associates with unique immune profile signatures that reinforce the need for a treat to target approach for both endotypes of RA.


Asunto(s)
Ácidos Araquidónicos/metabolismo , Artritis Reumatoide/inmunología , Genómica/métodos , Humanos
20.
Front Immunol ; 12: 722349, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35095831

RESUMEN

Dendritic cells (DC) have a key role in the initiation and progression of inflammatory arthritis (IA). In this study, we identified a DC population that derive from monocytes, characterized as CD209/CD14+ DC, expressing classical DC markers (HLADR, CD11c) and the Mo-DC marker (CD209), while also retaining the monocytic marker CD14. This CD209/CD14+ DC population is present in the circulation of Healthy Control (HC), with increased frequency in Rheumatoid Arthritis (RA) and Psoriatic arthritic (PsA) patients. We demonstrate, for the first time, that circulatory IA CD209/CD14+ DC express more cytokines (IL1ß/IL6/IL12/TNFα) and display a unique chemokine receptor expression and co-expression profiles compared to HC. We demonstrated that CD209/CD14+ DC are enriched in the inflamed joint where they display a unique inflammatory and maturation phenotype, with increased CD40 and CD80 and co-expression of specific chemokine receptors, displaying unique patterns between PsA and RA. We developed a new protocol of magnetic isolation and expansion for CD209+ DC from blood and identified transcriptional differences involved in endocytosis/antigen presentation between RA and PsA CD209+ DC. In addition, we observed that culture of healthy CD209+ DC with IA synovial fluid (SF), but not Osteoarthritis (OA) SF, was sufficient to induce the development of CD209/CD14+ DC, leading to a poly-mature DC phenotype. In addition, differential effects were observed in terms of chemokine receptor and chemokine expression, with healthy CD209+ DC displaying increased expression/co-expression of CCR6, CCR7, CXCR3, CXCR4 and CXCR5 when cultured with RA SF, while an increase in the chemokines CCR3, CXCL10 and CXCL11 was observed when cultured with PsA SF. This effect may be mediated in part by the observed differential increase in chemokines expressed in RA vs PsA SF. Finally, we observed that the JAK/STAT pathway, but not the NF-κB pathway (driven by TNFα), regulated CD209/CD14+ DC function in terms of activation, inflammatory state, and migratory capacity. In conclusion, we identified a novel CD209/CD14+ DC population, which is active in the circulation of RA and PsA, an effect potentiated once they enter the joint. Furthermore, we demonstrated that JAK/STAT inhibition can be used as a therapeutic strategy to decrease the inflammatory state of the pathogenic CD209/CD14+ DC.


Asunto(s)
Artritis Psoriásica/inmunología , Artritis Reumatoide/inmunología , Moléculas de Adhesión Celular/inmunología , Células Dendríticas/inmunología , Lectinas Tipo C/inmunología , Receptores de Lipopolisacáridos/inmunología , Receptores de Superficie Celular/inmunología , Líquido Sinovial/inmunología , Membrana Sinovial/inmunología , Adulto , Anciano , Quimiocinas/inmunología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Monocitos/inmunología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda