RESUMEN
Recently a new di-gold(I) organometallic complex [1,3-(Ph(3)PAu)(2)-C(6)H(4)] (KF0101) has been synthesised and found to exhibit cytotoxic activity in vitro. Subsequently it has been demonstrated that KF0101 shows little or no cross-resistance against a number of the cisplatin resistant ovarian cancer cell lines in vitro suggesting a different mode of action for the drug. In this study, syncrotron radiation infrared microspectroscopy (SR-IRMS) has been used on drug treated single A2780 cells in order to determine if this different mode of action can be identified spectroscopically. The aim of the study was to establish: (i) if single cell SR-IRMS could be used to give insight into the cellular response on treatment with different cytotoxic agents relative to non-treated cells (control) and (ii) that if the cytotoxic drugs elicit a different biochemical response these responses could be distinguished from each other. The most striking features obtained after Principal Components Analysis (PCA) of Resonant Mie Scattering (RMieS) corrected single cell spectra of drug treated ovarian A2780 cells are: (i) The spectra obtained for the control are quite heterogeneous and several hundred spectra are required to adequately define the nature of the control; (ii) after drug treatment at the IC50 level for 24 h with cisplatin, KF0101, methotrexate, paclitaxel or 5-fluorouracil the cell spectra, as represented on a PCA scores plot, generally concentrate in certain well defined areas of the control, there are however a small number of spectra that fall outside of the area defined by the control; and (iii) a differentiation between cell spectra obtained on treatment with different drugs is observed which fits well with different in vitro cell culture behaviour and a flow cytometry cell cycle analysis of the control and drug treated cells. Inspection of the loading plots shows that PC1 is essentially the same for all plots and reflects changes in cell biochemistry related to the cell cycle. PC2, however, on comparison of the control versus cisplatin or cisplatin versus KF0101 is indicative of differences induced by drug treatment and has been termed as cell cycle-plus behaviour. These data are shown to be consistent with that obtained using bench-top IRMS by averaging a number of single cell spectra and carrying out a PCA, but SR-IRMS offers more insight into how the drug is affecting the cell population. More importantly, this approach enables the influence of the cell cycle on both the control and drug treated samples to be taken into consideration when evaluating the drug-cell interaction.
Asunto(s)
Antineoplásicos/farmacología , Análisis de la Célula Individual/métodos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Sincrotrones , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Femenino , Citometría de Flujo , Humanos , Concentración 50 Inhibidora , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Análisis de Componente Principal , Análisis de la Célula Individual/instrumentación , Espectroscopía Infrarroja por Transformada de Fourier/instrumentaciónRESUMEN
All trans-retinoic acid (ATRA) is widely used to direct the differentiation of cultured stem cells. When exposed to the pluripotent human embryonal carcinoma (EC) stem cell line, TERA2.cl.SP12, ATRA induces ectoderm differentiation and the formation of neuronal cell types. We report in this study that novel polyene chain length analogues of ATRA require a specific chain length to elicit a biological responses of the EC cells TERA2.cl.SP12, with synthetic retinoid AH61 being particularly active, and indeed more so than ATRA. The impacts of both the synthetic retinoid AH61 and natural ATRA on the TERA2.cl.SP12 cells were directly compared using both RT-PCR and Fourier Transform Infrared Micro-Spectroscopy (FT-IRMS) coupled with multivariate analysis. Analytical results produced from this study also confirmed that the synthetic retinoid AH61 had biological activity comparable or greater than that of ATRA. In addition to this, AH61 has the added advantage of greater compound stability than ATRA, therefore, avoiding issues of oxidation or decomposition during use with embryonic stem cells.
Asunto(s)
Células Madre de Carcinoma Embrionario/efectos de los fármacos , Ácidos Grasos Insaturados/farmacología , Células Madre Pluripotentes/citología , Tetrahidronaftalenos/farmacología , Tretinoina/análogos & derivados , Diferenciación Celular , Ácidos Grasos Insaturados/síntesis química , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Células Madre Pluripotentes/efectos de los fármacos , Espectroscopía Infrarroja por Transformada de Fourier , Tetrahidronaftalenos/síntesis química , Tretinoina/farmacologíaRESUMEN
All trans-retinoic acid (ATRA) is widely used to direct the differentiation of cultured stem cells. When exposed to the pluripotent human embryonal carcinoma (EC) stem cell line, TERA2.cl.SP12, ATRA induces ectoderm differentiation and the formation of neuronal cell types. We have previously generated synthetic analogues of retinoic acid (EC23 and EC19) which also induce the differentiation of EC cells. Even though EC23 and EC19 have similar chemical structures, they have differing biochemical effects in terms of EC cell differentiation. EC23 induces neuronal differentiation in a manner similar to ATRA, whereas EC19 directs the cells to form epithelial-like derivatives. Previous MALDI-TOF MS analysis examined the response of TERA2.cl.SP12 cells after exposure to ATRA, EC23 and EC19 and further demonstrated the similarly in the effect of ATRA and EC23 activity whilst responses to EC19 were very different. In this study, we show that Fourier Transform Infrared Micro-Spectroscopy (FT-IRMS) coupled with appropriate scatter correction and multivariate analysis can be used as an effective tool to further investigate the differentiation of human pluripotent stem cells and monitor the alternative affects different retinoid compounds have on the induction of differentiation. FT-IRMS detected differences between cell populations as early as 3 days of compound treatment. Populations of cells treated with different retinoid compounds could easily be distinguished from one another during the early stages of cell differentiation. These data demonstrate that FT-IRMS technology can be used as a sensitive screening technique to monitor the status of the stem cell phenotype and progression of differentiation along alternative pathways in response to different compounds.
Asunto(s)
Benzoatos/farmacología , Diferenciación Celular/efectos de los fármacos , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/efectos de los fármacos , Espectroscopía Infrarroja por Transformada de Fourier , Tetrahidronaftalenos/farmacología , Tretinoina/farmacología , Antígenos de Superficie/metabolismo , Benzoatos/química , Línea Celular , Humanos , Células Madre Pluripotentes/metabolismo , Análisis de la Célula Individual , Tetrahidronaftalenos/química , Factores de Tiempo , Tretinoina/químicaRESUMEN
Cyclometallated gold(III) complexes containing functionalised (2-dimethylaminomethyl)phenyl ligands have been prepared by transmetallation from boroxines to sodium tetrachloroaurate.
RESUMEN
The difficulty in generating 1,4-Li2-C6H4 utilising the lithium halogen exchange reaction on 1,4-Br2-C6H4, 1,4-I2-C6H4 and 1-Br-4-I-C6H4 is revisited and only on treatment of 1,4-I2-C6H4 with 2 molar equivalents of n-BuLi can 1,4-Li2-C6H4 1 be isolated in excellent yield. Treatment of 1 with two equivalents of [ClAu(PPh3)] gives [1,4-(Ph3PAu)2-C6H4] 2a in excellent yield. Subsequent treatment of 2a with 2.5 molar equivalents of PPh2Me, PPhMe2 or PMe3 affords the PPh3 substituted compounds [1,4-(LAu)2-C6H4] (L = PPh2Me 2b, PPhMe2 2c, PMe3 2d) in essentially quantitative yields. On treatment of 1,4-Br2-C6H4 or 1-Br-4-I-C6H4 with 2 molar equivalents of n-BuLi only mono-lithiation takes place to give 1-Br-4-Li-C6H4 3 as shown through the isolation of essentially 1:1 molar equivalents of Ph2PC6H4-4-Br and Ph2PBu on treatment with 2 molar equivalents of ClPPh2. Treatment of 3, prepared by lithium/iodine exchange on 1-Br-4-I-C6H4, with [ClAu(PPh3)] affords [(Ph3P)Au(C6H4-4-Br)] 4 as expected and in addition [(Ph3P)Au(n-Bu)(C6H4-4-Br)2] 5, indicating the straightforward chloride/aryl exchange at gold may proceed in competition with oxidative addition of the n-BuI, generated in the initial lithium/iodine exchange reaction, to some aurate complex Li[Au(C6H4-4-Br)2] 6 formed in situ followed by reductive elimination of Br-C6H4-4-n-Bu in a manner that mimics lithium diorganocuprate chemistry. All of the gold-containing compounds have been spectroscopically characterised by 1H and 31P-{1H} NMR and in addition compounds 2a-d and 5 by single crystal X-ray diffraction studies. The solid state structures observed for 2a-d are dictated by non-conventional hydrogen bonding and the packing requirements of the phosphine ligands. For 2a and 2b there is no close Au...Au approach, however for 2c and 2d the reduction in the number of phenyl rings allows the formation of Au...Au contacts. For 2c and 2d the extended structures appear to be helical chains with Au...Au contact parameters of 3.855(5) A and C-Au-Au-C 104.1(3)degrees for 2c and 3.139(4) A and C-Au-Au-C -92.0(2)degrees for 2d. The Au...Au approach in 2c is longer than is normally accepted for an AuAu contact and is dictated by ligand directed non-conventional hydrogen bonding to the aurated benzene ring and the pi-stacking requirements of the phosphine ligand. By comparison of the structures 2a-2d with other structures in the database it is evident that the aurophilic interaction is a poor supramolecular synthon in the presence of non-conventional hydrogen bond donors. Searches of the CCDC database suggest that the observed parameters for the Au...Au contact in 2c sit close to the cut-off point for observing this type of contact. In addition to aurophilic contacts and non-conventional hydrogen bonds there are a number of halogenated solvent C-Cl...Au contacts observed in the structures of 2a and 2d. The nature of these contacts have implications for the accepted van der Waals radius of gold which should be extended to 2 A.
RESUMEN
Raman data suggest that a crystallographically determined Cl3CD...F2BF2- interaction in the solid-state structure of [Ru(CNBut)(CO)(eta2-C6H4-2-CHO)(PPh3)2][BF4].2CDCl3 is an example of a blue-shifting bifurcated hydrogen bond. The nu(C-D) band blue-shifts 5 cm-1 to 2269 cm-1 compared to 2264 cm-1 for CDCl3 in the gas phase and 20 cm-1 from frozen CDCl3 at 2249 cm-1. A conventional interpretation of these band shifts would suggest that the CCl2 fragment of DCCl3 is a stronger hydrogen-bond acceptor than the BF2 fragment of a BF4- group.
RESUMEN
The organomercurial compounds Hg[1-C(6)H(4)-2-C(H)=NC(6)H(5-n)R(n)](2) (R = 4-NMe(2), 6a; 4-Me, 6b; 4-I, 6c; 4-NO(2), 6d; 2-(i)Pr, 6e; 2-Me, 6f; 2,6-(i)Pr(2), 6g; 2,6-Me(2), 6h) have been prepared in good overall yield from 2-bromobenzaldehyde. All of the compounds have been characterized by elemental analysis, (1)H NMR, (13)C[(1)H] NMR, and infrared spectroscopy. In addition, compounds 6a [C(30)H(30)HgN(4), triclinic, P, a = 6.20000(10) A, b = 9.2315(2) A, c = 10.9069(3) A, alpha = 85.8510(10) degrees, beta = 89.3570(10) degrees, gamma = 87.206(2) degrees, Z = 1], 6b [C(28)H(24)HgN(2), monoclinic, P2(1)/c, a = 12.8260(5) A, b = 14.0675(4) A, c = 6.1032(2) A, beta = 90.0990(10) degrees, Z = 2], 6g [C(38)H(44)HgN(2), triclinic, P, a = 8.2626(2) A, b = 9.8317(2) A, c = 11.8873(3) A, alpha = 103.6650(10) degrees, beta = 109.3350(10) degrees, gamma = 104.627(2) degrees, Z = 1], and 6h [C(30)H(28)HgN(2), monoclinic, P2(1)/c, a = 12.5307(2) A, b = 10.9852(2) A, c = 18.2112(2) A, beta = 104.0190(10) degrees, gamma = 87.206(2) degrees, Z = 4] have been characterized by low-temperature single-crystal X-ray diffraction studies, and two different molecular geometries about the central mercury atom have been observed; intramolecular contacts suggest a van der Waals radius for Hg of 2.1-2.2 A.