Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(34): E8086-E8095, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30076228

RESUMEN

Hyperpolarization-activated, cyclic nucleotide-gated (HCN) ion channels are both voltage- and ligand-activated membrane proteins that contribute to electrical excitability and pace-making activity in cardiac and neuronal cells. These channels are members of the voltage-gated Kv channel superfamily and cyclic nucleotide-binding domain subfamily of ion channels. HCN channels have a unique feature that distinguishes them from other voltage-gated channels: the HCN channel pore opens in response to hyperpolarizing voltages instead of depolarizing voltages. In the canonical model of electromechanical coupling, based on Kv channels, a change in membrane voltage activates the voltage-sensing domains (VSD) and the activation energy passes to the pore domain (PD) through a covalent linker that connects the VSD to the PD. In this investigation, the covalent linkage between the VSD and PD, the S4-S5 linker, and nearby regions of spHCN channels were mutated to determine the functional role each plays in hyperpolarization-dependent activation. The results show that: (i) the S4-S5 linker is not required for hyperpolarization-dependent activation or ligand-dependent gating; (ii) the S4 C-terminal region (S4C-term) is not necessary for ligand-dependent gating but is required for hyperpolarization-dependent activation and acts like an autoinhibitory domain on the PD; (iii) the S5N-term region is involved in VSD-PD coupling and holding the pore closed; and (iv) spHCN channels have two voltage-dependent processes, a hyperpolarization-dependent activation and a depolarization-dependent recovery from inactivation. These results are inconsistent with the canonical model of VSD-PD coupling in Kv channels and elucidate the mechanism for hyperpolarization-dependent activation of HCN channels.


Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos/química , Activación del Canal Iónico , Erizos de Mar/química , Animales , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Dominios Proteicos , Erizos de Mar/genética , Erizos de Mar/metabolismo , Relación Estructura-Actividad
2.
J Biol Chem ; 291(1): 371-81, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26559974

RESUMEN

Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels play an important role in regulating electrical activity in the heart and brain. They are gated by the binding of cyclic nucleotides to a conserved, intracellular cyclic nucleotide-binding domain (CNBD), which is connected to the channel pore by a C-linker region. Binding of cyclic nucleotides increases the rate and extent of channel activation and shifts it to less hyperpolarized voltages. We probed the allosteric mechanism of different cyclic nucleotides on the CNBD and on channel gating. Electrophysiology experiments showed that cAMP, cGMP, and cCMP were effective agonists of the channel and produced similar increases in the extent of channel activation. In contrast, electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) on the isolated CNBD indicated that the induced conformational changes and the degrees of stabilization of the active conformation differed for the three cyclic nucleotides. We explain these results with a model where different allosteric mechanisms in the CNBD all converge to have the same effect on the C-linker and render all three cyclic nucleotides similarly potent activators of the channel.


Asunto(s)
Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/química , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Nucleótidos Cíclicos/farmacología , Canales de Potasio/química , Canales de Potasio/metabolismo , Regulación Alostérica/efectos de los fármacos , Aminoácidos/metabolismo , Animales , Anisotropía , Electrones , Fluorescencia , Activación del Canal Iónico/efectos de los fármacos , Espectroscopía de Resonancia Magnética , Ratones , Modelos Moleculares , Estructura Terciaria de Proteína , Termodinámica
3.
J Biol Chem ; 286(17): 15535-42, 2011 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-21383006

RESUMEN

Many ion channels have been shown to be regulated by the membrane signaling phospholipid phosphatidylinositol 4,5-bisphosphate (PIP(2)). Here, we demonstrate that the binding of PIP(2) to SpIH, a sea urchin hyperpolarization-activated cyclic nucleotide-gated ion channel (HCN), has a dual effect: potentiation and inhibition. The potentiation is observed as a shift in the voltage dependence of activation to more depolarized voltages. The inhibition is observed as a reduction in the currents elicited by the partial agonist cGMP. These two effects were separable and arose from PIP(2) binding to two different regions. Deletion of the C-terminal region of SpIH removed PIP(2)-induced inhibition but not the PIP(2)-induced shift in voltage dependence. Mutating key positively charged amino acids in the C-terminal region adjacent to the membrane selectively disrupted PIP(2)-induced inhibition, suggesting a direct interaction between PIP(2) in the membrane and amino acids in the C-terminal region that stabilizes the closed state relative to the open state in HCN channels.


Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos/antagonistas & inhibidores , Fosfatidilinositol 4,5-Difosfato/farmacología , Aminoácidos Acídicos , Animales , Sitios de Unión , GMP Cíclico/farmacología , Canales Catiónicos Regulados por Nucleótidos Cíclicos/agonistas , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canales de Potasio/agonistas , Unión Proteica , Erizos de Mar
4.
Nat Methods ; 6(7): 532-7, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19525958

RESUMEN

Visualizing conformational dynamics in proteins has been difficult, and the atomic-scale motions responsible for the behavior of most allosteric proteins are unknown. Here we report that fluorescence resonance energy transfer (FRET) between a small fluorescent dye and a nickel ion bound to a dihistidine motif can be used to monitor small structural rearrangements in proteins. This method provides several key advantages over classical FRET, including the ability to measure the dynamics of close-range interactions, the use of small probes with short linkers, a low orientation dependence, and the ability to add and remove unique tunable acceptors. We used this 'transition metal ion FRET' approach along with X-ray crystallography to determine the structural changes of the gating ring of the mouse hyperpolarization-activated cyclic nucleotide-regulated ion channel HCN2. Our results suggest a general model for the conformational switch in the cyclic nucleotide-binding site of cyclic nucleotide-regulated ion channels.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Conformación Proteica , Proteínas/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Cationes Bivalentes , Cristalografía por Rayos X , AMP Cíclico/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Canales Iónicos/química , Canales Iónicos/metabolismo , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Níquel/química , Péptidos/química , Canales de Potasio , Unión Proteica , Estructura Secundaria de Proteína
5.
Structure ; 15(6): 671-82, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17562314

RESUMEN

Hyperpolarization-activated cyclic nucleotide-modulated (HCN) ion channels regulate the spontaneous firing activity and electrical excitability of many cardiac and neuronal cells. The modulation of HCN channel opening by the direct binding of cAMP underlies many physiological processes such as the autonomic regulation of the heart rate. Here we use a combination of X-ray crystallography and electrophysiology to study the allosteric mechanism for cAMP modulation of HCN channels. SpIH is an invertebrate HCN channel that is activated fully by cAMP, but only partially by cGMP. We exploited the partial agonist action of cGMP on SpIH to reveal the molecular mechanism for cGMP specificity of many cyclic nucleotide-regulated enzymes. Our results also elaborate a mechanism for the allosteric conformational change in the cyclic nucleotide-binding domain and a mechanism for partial agonist action. These mechanisms will likely extend to other cyclic nucleotide-regulated channels and enzymes as well.


Asunto(s)
Canales de Potasio/química , Canales de Potasio/metabolismo , Regulación Alostérica , Sustitución de Aminoácidos , Animales , Proteínas Portadoras/metabolismo , Cristalografía por Rayos X , AMP Cíclico/química , AMP Cíclico/metabolismo , AMP Cíclico/farmacología , GMP Cíclico/metabolismo , GMP Cíclico/farmacología , Canales Catiónicos Regulados por Nucleótidos Cíclicos , ADN Complementario/genética , Relación Dosis-Respuesta a Droga , Femenino , Enlace de Hidrógeno , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Activación del Canal Iónico , Ligandos , Microinyecciones , Modelos Biológicos , Modelos Químicos , Modelos Moleculares , Oocitos/citología , Oocitos/fisiología , Técnicas de Placa-Clamp , Canales de Potasio/agonistas , Canales de Potasio/genética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Valina/metabolismo , Xenopus
6.
J Gen Physiol ; 121(6): 563-82, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12771192

RESUMEN

Cyclic nucleotide-gated (CNG) channels belong to the P-loop-containing family of ion channels that also includes KcsA, MthK, and Shaker channels. In this study, we investigated the structure and rearrangement of the CNGA1 channel pore using cysteine mutations and cysteine-specific modification. We constructed 16 mutant channels, each one containing a cysteine mutation at one of the positions between 384 and 399 in the S6 region of the pore. By measuring currents activated by saturating concentrations of the full agonist cGMP and the partial agonists cIMP and cAMP, we show that mutating S6 residues to cysteine caused both favorable and unfavorable changes in the free energy of channel opening. The time course of cysteine modification with 2-aminoethylmethane thiosulfonate hydrochloride (MTSEA) was complex. For many positions we observed decreases in current activated by cGMP and concomitant increases in current activated by cIMP and cAMP. A model where modification affected both gating and permeation successfully reproduced the complex time course of modification for most of the mutant channels. From the model fits to the time course of modification for each mutant channel, we quantified the following: (a) the bimolecular rate constant of modification in the open state, (b) the change in conductance, and (c) the change in the free energy of channel opening for modification of each cysteine. At many S6 cysteines, modification by MTSEA caused a decrease in conductance and a favorable change in the free energy of channel opening. Our results are interpreted within the structural framework of the known structures of KcsA and MthK. We conclude that: (a) MTSEA modification affects both gating and permeation, (b) the open configuration of the pore of CNGA1 channels is consistent with the structure of MthK, and (c) the modification of S6 residues disrupts the helical packing of the closed channel, making it easier for channels to open.


Asunto(s)
Metanosulfonato de Etilo/análogos & derivados , Activación del Canal Iónico/fisiología , Canales Iónicos/fisiología , Secuencia de Aminoácidos , AMP Cíclico/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos , Cisteína/genética , Metanosulfonato de Etilo/farmacocinética , Humanos , Indicadores y Reactivos/farmacocinética , Canales Iónicos/química , Datos de Secuencia Molecular , Oocitos , Técnicas de Placa-Clamp , Permeabilidad , Mutación Puntual , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda