Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Gut ; 71(12): 2526-2538, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35058274

RESUMEN

OBJECTIVE: Mucosal-associated invariant T (MAIT) cells are the most abundant T cells in human liver. They respond to bacterial metabolites presented by major histocompatibility complex-like molecule MR1. MAIT cells exert regulatory and antimicrobial functions and are implicated in liver fibrogenesis. It is not well understood which liver cells function as antigen (Ag)-presenting cells for MAIT cells, and under which conditions stimulatory Ags reach the circulation. DESIGN: We used different types of primary human liver cells in Ag-presentation assays to blood-derived and liver-derived MAIT cells. We assessed MAIT cell stimulatory potential of serum from healthy subjects and patients with portal hypertension undergoing transjugular intrahepatic portosystemic shunt stent, and patients with inflammatory bowel disease (IBD). RESULTS: MAIT cells were dispersed throughout healthy human liver and all tested liver cell types stimulated MAIT cells, hepatocytes being most efficient. MAIT cell activation by liver cells occurred in response to bacterial lysate and pure Ag, and was prevented by non-activating MR1 ligands. Serum derived from peripheral and portal blood, and from patients with IBD stimulated MAIT cells in MR1-dependent manner. CONCLUSION: Our findings reveal previously unrecognised roles of liver cells in Ag metabolism and activation of MAIT cells, repression of which creates an opportunity to design antifibrotic therapies. The presence of MAIT cell stimulatory Ags in serum rationalises the observed activated MAIT cell phenotype in liver. Increased serum levels of gut-derived MAIT cell stimulatory ligands in patients with impaired intestinal barrier function indicate that intrahepatic Ag-presentation may represent an important step in the development of liver disease.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Células T Invariantes Asociadas a Mucosa , Humanos , Antígenos de Histocompatibilidad Menor , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Hígado/metabolismo , Hepatocitos/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Activación de Linfocitos
2.
Gastroenterology ; 150(1): 206-217.e4, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26404951

RESUMEN

BACKGROUND & AIMS: Efforts to develop an effective vaccine against hepatitis C virus (HCV) have been hindered by the propensity of the virus to evade host immune responses. HCV particles in serum and in cell culture associate with lipoproteins, which contribute to viral entry. Lipoprotein association has also been proposed to mediate viral evasion of the humoral immune response, though the mechanisms are poorly defined. METHODS: We used small interfering RNAs to reduce levels of apolipoprotein E (apoE) in cell culture-derived HCV-producing Huh7.5-derived hepatoma cells and confirmed its depletion by immunoblot analyses of purified viral particles. Before infection of naïve hepatoma cells, we exposed cell culture-derived HCV strains of different genotypes, subtypes, and variants to serum and polyclonal and monoclonal antibodies isolated from patients with chronic HCV infection. We analyzed the interaction of apoE with viral envelope glycoprotein E2 and HCV virions by immunoprecipitation. RESULTS: Through loss-of-function studies on patient-derived HCV variants of several genotypes and subtypes, we found that the HCV particle apoE allows the virus to avoid neutralization by patient-derived antibodies. Functional studies with human monoclonal antiviral antibodies showed that conformational epitopes of envelope glycoprotein E2 domains B and C were exposed after depletion of apoE. The level and conformation of virion-associated apoE affected the ability of the virus to escape neutralization by antibodies. CONCLUSIONS: In cell-infection studies, we found that HCV-associated apoE helps the virus avoid neutralization by antibodies against HCV isolated from chronically infected patients. This method of immune evasion poses a challenge for the development of HCV vaccines.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Apolipoproteínas E/metabolismo , Hepacivirus/inmunología , Anticuerpos contra la Hepatitis C/inmunología , Células Cultivadas , Hepacivirus/genética , Hepatitis C/sangre , Hepatocitos/inmunología , Humanos , Estadísticas no Paramétricas , Proteínas del Envoltorio Viral/inmunología , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus
3.
J Virol ; 90(14): 6387-6400, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27147737

RESUMEN

UNLABELLED: Hepatitis C virus (HCV)-induced chronic liver disease is a leading cause of hepatocellular carcinoma (HCC). However, the molecular mechanisms underlying HCC development following chronic HCV infection remain poorly understood. MicroRNAs (miRNAs) play an important role in homeostasis within the liver, and deregulation of miRNAs has been associated with liver disease, including HCC. While host miRNAs are essential for HCV replication, viral infection in turn appears to induce alterations of intrahepatic miRNA networks. Although the cross talk between HCV and liver cell miRNAs most likely contributes to liver disease pathogenesis, the functional involvement of miRNAs in HCV-driven hepatocyte injury and HCC remains elusive. Here we combined a hepatocyte-like cell-based model system, high-throughput small RNA sequencing, computational analysis, and functional studies to investigate HCV-miRNA interactions that may contribute to liver disease and HCC. Profiling analyses indicated that HCV infection differentially regulated the expression of 72 miRNAs by at least 2-fold, including miRNAs that were previously described to target genes associated with inflammation, fibrosis, and cancer development. Further investigation demonstrated that the miR-146a-5p level was consistently increased in HCV-infected hepatocyte-like cells and primary human hepatocytes, as well as in liver tissue from HCV-infected patients. Genome-wide microarray and computational analyses indicated that miR-146a-5p overexpression modulates pathways that are related to liver disease and HCC development. Furthermore, we showed that miR-146a-5p has a positive impact on late steps of the viral replication cycle, thereby increasing HCV infection. Collectively, our data indicate that the HCV-induced increase in miR-146a-5p expression both promotes viral infection and is relevant for pathogenesis of liver disease. IMPORTANCE: HCV is a leading cause of chronic liver disease and cancer. However, how HCV induces liver cancer remains poorly understood. There is accumulating evidence that a viral cure does not eliminate the risk for HCC development. Thus, there is an unmet medical need to develop novel approaches to predict and prevent virus-induced HCC. miRNA expression is known to be deregulated in liver disease and cancer. Furthermore, miRNAs are essential for HCV replication, and HCV infection alters miRNA expression. However, how miRNAs contribute to HCV-driven pathogenesis remains elusive. Here we show that HCV induces miRNAs that may contribute to liver injury and carcinogenesis. The miR-146a-5p level was consistently increased in different cell-based models of HCV infection and in HCV patient-derived liver tissue. Furthermore, miR-146a-5p increased HCV infection. Collectively, our data are relevant to understanding viral pathogenesis and may open perspectives for novel biomarkers and prevention of virus-induced liver disease and HCC.


Asunto(s)
Carcinoma Hepatocelular/virología , Hepacivirus/patogenicidad , Hepatitis C/virología , Hepatocitos/metabolismo , Neoplasias Hepáticas/virología , Redes y Vías Metabólicas/genética , MicroARNs/genética , Adulto , Anciano , Biomarcadores/análisis , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Femenino , Perfilación de la Expresión Génica , Hepatitis C/genética , Hepatitis C/patología , Hepatocitos/citología , Hepatocitos/virología , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Huésped-Patógeno , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Masculino , Persona de Mediana Edad , Activación Transcripcional , Regulación hacia Arriba
4.
PLoS Pathog ; 10(5): e1004128, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24830295

RESUMEN

Hepatitis C virus (HCV) is transmitted between hepatocytes via classical cell entry but also uses direct cell-cell transfer to infect neighboring hepatocytes. Viral cell-cell transmission has been shown to play an important role in viral persistence allowing evasion from neutralizing antibodies. In contrast, the role of HCV cell-cell transmission for antiviral resistance is unknown. Aiming to address this question we investigated the phenotype of HCV strains exhibiting resistance to direct-acting antivirals (DAAs) in state-of-the-art model systems for cell-cell transmission and spread. Using HCV genotype 2 as a model virus, we show that cell-cell transmission is the main route of viral spread of DAA-resistant HCV. Cell-cell transmission of DAA-resistant viruses results in viral persistence and thus hampers viral eradication. We also show that blocking cell-cell transmission using host-targeting entry inhibitors (HTEIs) was highly effective in inhibiting viral dissemination of resistant genotype 2 viruses. Combining HTEIs with DAAs prevented antiviral resistance and led to rapid elimination of the virus in cell culture model. In conclusion, our work provides evidence that cell-cell transmission plays an important role in dissemination and maintenance of resistant variants in cell culture models. Blocking virus cell-cell transmission prevents emergence of drug resistance in persistent viral infection including resistance to HCV DAAs.


Asunto(s)
Antivirales/farmacología , Comunicación Celular , Farmacorresistencia Viral , Hepacivirus/efectos de los fármacos , Hepacivirus/fisiología , Hepatitis C/inmunología , Hepatitis C/virología , Internalización del Virus , Anticuerpos Neutralizantes/metabolismo , Carbamatos , Comunicación Celular/inmunología , Células Cultivadas , Farmacorresistencia Viral/inmunología , Hepacivirus/crecimiento & desarrollo , Hepatitis C/patología , Humanos , Imidazoles/farmacología , Oligopéptidos/farmacología , Prolina/análogos & derivados , Prolina/farmacología , Pirrolidinas , Valina/análogos & derivados , Carga Viral/inmunología , Internalización del Virus/efectos de los fármacos
5.
Proc Natl Acad Sci U S A ; 110(32): 13109-13, 2013 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-23878230

RESUMEN

Recent evidence indicates there is a role for small membrane vesicles, including exosomes, as vehicles for intercellular communication. Exosomes secreted by most cell types can mediate transfer of proteins, mRNAs, and microRNAs, but their role in the transmission of infectious agents is less established. Recent studies have shown that hepatocyte-derived exosomes containing hepatitis C virus (HCV) RNA can activate innate immune cells, but the role of exosomes in the transmission of HCV between hepatocytes remains unknown. In this study, we investigated whether exosomes transfer HCV in the presence of neutralizing antibodies. Purified exosomes isolated from HCV-infected human hepatoma Huh7.5.1 cells were shown to contain full-length viral RNA, viral protein, and particles, as determined by RT-PCR, mass spectrometry, and transmission electron microscopy. Exosomes from HCV-infected cells were capable of transmitting infection to naive human hepatoma Huh7.5.1 cells and establishing a productive infection. Even with subgenomic replicons, lacking structural viral proteins, exosome-mediated transmission of HCV RNA was observed. Treatment with patient-derived IgGs showed a variable degree of neutralization of exosome-mediated infection compared with free virus. In conclusion, this study showed that hepatic exosomes can transmit productive HCV infection in vitro and are partially resistant to antibody neutralization. This discovery sheds light on neutralizing antibodies resistant to HCV transmission by exosomes as a potential immune evasion mechanism.


Asunto(s)
Exosomas/virología , Hepacivirus/genética , ARN Viral/genética , Virión/genética , Anticuerpos Neutralizantes/inmunología , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/virología , Línea Celular Tumoral , Claudina-1/inmunología , Claudina-1/metabolismo , Exosomas/metabolismo , Exosomas/ultraestructura , Hepacivirus/inmunología , Hepacivirus/fisiología , Hepatitis C/inmunología , Hepatitis C/virología , Interacciones Huésped-Patógeno , Humanos , Inmunoglobulina G/inmunología , Espectrometría de Masas , Microscopía Confocal , Microscopía Electrónica de Transmisión , ARN Viral/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Receptores Depuradores de Clase B/inmunología , Receptores Depuradores de Clase B/metabolismo , Tetraspanina 28/inmunología , Tetraspanina 28/metabolismo , Virión/fisiología , Virión/ultraestructura
6.
Gut ; 64(3): 483-94, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24848265

RESUMEN

OBJECTIVE: Although direct-acting antiviral agents (DAAs) have markedly improved the outcome of treatment in chronic HCV infection, there continues to be an unmet medical need for improved therapies in difficult-to-treat patients as well as liver graft infection. Viral entry is a promising target for antiviral therapy. DESIGN: Aiming to explore the role of entry inhibitors for future clinical development, we investigated the antiviral efficacy and toxicity of entry inhibitors in combination with DAAs or other host-targeting agents (HTAs). Screening a large series of combinations of entry inhibitors with DAAs or other HTAs, we uncovered novel combinations of antivirals for prevention and treatment of HCV infection. RESULTS: Combinations of DAAs or HTAs and entry inhibitors including CD81-, scavenger receptor class B type I (SR-BI)- or claudin-1 (CLDN1)-specific antibodies or small-molecule inhibitors erlotinib and dasatinib were characterised by a marked and synergistic inhibition of HCV infection over a broad range of concentrations with undetectable toxicity in experimental designs for prevention and treatment both in cell culture models and in human liver-chimeric uPA/SCID mice. CONCLUSIONS: Our results provide a rationale for the development of antiviral strategies combining entry inhibitors with DAAs or HTAs by taking advantage of synergy. The uncovered combinations provide perspectives for efficient strategies to prevent liver graft infection and novel interferon-free regimens.


Asunto(s)
Antivirales/uso terapéutico , Hepacivirus/efectos de los fármacos , Hepatitis C/tratamiento farmacológico , Internalización del Virus/efectos de los fármacos , Animales , Antivirales/administración & dosificación , Línea Celular , Quimera , Sinergismo Farmacológico , Quimioterapia Combinada , Hepatitis C/prevención & control , Hepatocitos/efectos de los fármacos , Hepatocitos/virología , Humanos , Ratones , Ratones SCID
7.
J Virol ; 88(16): 9418-28, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24920811

RESUMEN

UNLABELLED: At least five New World (NW) arenaviruses cause hemorrhagic fevers in South America. These pathogenic clade B viruses, as well as nonpathogenic arenaviruses of the same clade, use transferrin receptor 1 (TfR1) of their host species to enter cells. Pathogenic viruses are distinguished from closely related nonpathogenic ones by their additional ability to utilize human TfR1 (hTfR1). Here, we investigate the receptor usage of North American arenaviruses, whose entry proteins share greatest similarity with those of the clade B viruses. We show that all six North American arenaviruses investigated utilize host species TfR1 orthologs and present evidence consistent with arenavirus-mediated selection pressure on the TfR1 of the North American arenavirus host species. Notably, one of these viruses, AV96010151, closely related to the prototype Whitewater Arroyo virus (WWAV), entered cells using hTfR1, consistent with a role for a WWAV-like virus in three fatal human infections whose causative agent has not been identified. In addition, modest changes were sufficient to convert hTfR1 into a functional receptor for most of these viruses, suggesting that a minor alteration in virus entry protein may allow these viruses to use hTfR1. Our data establish TfR1 as a cellular receptor for North American arenaviruses, highlight an "arms race" between these viruses and their host species, support the association of North American arenavirus with fatal human infections, and suggest that these viruses have a higher potential to emerge and cause human diseases than has previously been appreciated. IMPORTANCE: hTfR1 use is a key determinant for a NW arenavirus to cause hemorrhagic fevers in humans. All known pathogenic NW arenaviruses are transmitted in South America by their host rodents. North American arenaviruses are generally considered nonpathogenic, but some of these viruses have been tentatively implicated in human fatalities. We show that these North American arenaviruses use the TfR1 orthologs of their rodent host species and identify TfR1 polymorphisms suggesting an ongoing "arms race" between these viruses and their hosts. We also show that a close relative of a North American arenavirus suggested to have caused human fatalities, the Whitewater Arroyo species complex virus AV96010151, uses human TfR1. Moreover, we present data that imply that modest changes in other North American arenaviruses might allow these viruses to infect humans. Collectively, our data suggest that North American arenaviruses have a higher potential to cause human disease than previously assumed.


Asunto(s)
Antígenos CD/metabolismo , Arenavirus del Nuevo Mundo/metabolismo , Receptores de Transferrina/metabolismo , Línea Celular , Células HEK293 , Fiebres Hemorrágicas Virales/metabolismo , Fiebres Hemorrágicas Virales/virología , Humanos , Receptores Virales/metabolismo , Proteínas Virales/metabolismo , Internalización del Virus
8.
J Virol ; 87(18): 10405-10, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23864633

RESUMEN

The relevance of claudin-6 and claudin-9 in hepatitis C virus (HCV) entry remains elusive. We produced claudin-6- or claudin-9-specific monoclonal antibodies that inhibit HCV entry into nonhepatic cells expressing exogenous claudin-6 or claudin-9. These antibodies had no effect on HCV infection of hepatoma cells or primary hepatocytes. Thus, although claudin-6 and claudin-9 can serve as entry factors in cell lines, HCV infection into human hepatocytes is not dependent on claudin-6 and claudin-9.


Asunto(s)
Claudinas/metabolismo , Hepacivirus/fisiología , Hepatocitos/virología , Internalización del Virus , Anticuerpos Monoclonales/inmunología , Células Cultivadas , Humanos
9.
Hepatology ; 58(4): 1225-35, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23519785

RESUMEN

UNLABELLED: Interferon-alpha (IFN-α) exhibits its antiviral activity through signal transducer and activator of transcription protein (STAT) signaling and the expression of IFN response genes (IRGs). Viral infection has been shown to result in activation of epidermal growth factor receptor (EGFR)-a host cell entry factor used by several viruses, including hepatitis C virus. However, the effect of EGFR activation for cellular antiviral responses is unknown. Here, we uncover cross-talk between EGFR and IFN-α signaling that has a therapeutic effect on IFN-α-based therapies and functional relevance for viral evasion and IFN resistance. We show that combining IFN-α with the EGFR inhibitor, erlotinib, potentiates the antiviral effect of each compound in a highly synergistic manner. The extent of the synergy correlated with reduced STAT3 phosphorylation in the presence of erlotinib, whereas STAT1 phosphorylation was not affected. Furthermore, reduced STAT3 phosphorylation correlated with enhanced expression of suppressors of cytokine signaling 3 (SOCS3) in the presence of erlotinib and enhanced expression of the IRGs, radical S-adenosyl methionine domain containing 2 and myxovirus resistance protein 1. Moreover, EGFR stimulation reduced STAT1 dimerization, but not phosphorylation, indicating that EGFR cross-talk with IFN signaling acts on the STATs at the level of binding DNA. CONCLUSIONS: Our results support a model where inhibition of EGFR signaling impairs STAT3 phosphorylation, leading to enhanced IRG expression and antiviral activity. These data uncover a novel role of EGFR signaling in the antiviral activity of IFN-α and open new avenues of improving the efficacy of IFN-α-based antiviral therapies.


Asunto(s)
Antivirales/farmacología , Receptores ErbB/fisiología , Hepacivirus/efectos de los fármacos , Hepatitis C/patología , Hepatocitos/efectos de los fármacos , Interferón-alfa/farmacología , Transducción de Señal/fisiología , Antivirales/uso terapéutico , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/virología , Línea Celular , Células Cultivadas , Sinergismo Farmacológico , Quimioterapia Combinada , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/efectos de los fármacos , Clorhidrato de Erlotinib , Hepatitis C/tratamiento farmacológico , Hepatitis C/metabolismo , Hepatocitos/patología , Hepatocitos/virología , Humanos , Interferón-alfa/uso terapéutico , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/virología , Quinazolinas/farmacología , Quinazolinas/uso terapéutico , Proteínas Tirosina Quinasas Receptoras/fisiología , Factor de Transcripción STAT3/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Resultado del Tratamiento
10.
Hepatology ; 57(2): 492-504, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23081796

RESUMEN

UNLABELLED: Scavenger receptor class B type I (SR-BI) is a high-density lipoprotein (HDL) receptor highly expressed in the liver and modulating HDL metabolism. Hepatitis C virus (HCV) is able to directly interact with SR-BI and requires this receptor to efficiently enter into hepatocytes to establish productive infection. A complex interplay between lipoproteins, SR-BI and HCV envelope glycoproteins has been reported to take place during this process. SR-BI has been demonstrated to act during binding and postbinding steps of HCV entry. Although the SR-BI determinants involved in HCV binding have been partially characterized, the postbinding function of SR-BI remains largely unknown. To uncover the mechanistic role of SR-BI in viral initiation and dissemination, we generated a novel class of anti-SR-BI monoclonal antibodies that interfere with postbinding steps during the HCV entry process without interfering with HCV particle binding to the target cell surface. Using the novel class of antibodies and cell lines expressing murine and human SR-BI, we demonstrate that the postbinding function of SR-BI is of key impact for both initiation of HCV infection and viral dissemination. Interestingly, this postbinding function of SR-BI appears to be unrelated to HDL interaction but to be directly linked to its lipid transfer function. CONCLUSION: Taken together, our results uncover a crucial role of the SR-BI postbinding function for initiation and maintenance of viral HCV infection that does not require receptor-E2/HDL interactions. The dissection of the molecular mechanisms of SR-BI-mediated HCV entry opens a novel perspective for the design of entry inhibitors interfering specifically with the proviral function of SR-BI.


Asunto(s)
Antígenos CD36/metabolismo , Hepacivirus/metabolismo , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/metabolismo , Antígenos CD36/inmunología , Línea Celular , HDL-Colesterol/antagonistas & inhibidores , HDL-Colesterol/metabolismo , Hepacivirus/inmunología , Hepacivirus/patogenicidad , Hepatitis C/prevención & control , Humanos , Lipoproteínas HDL/metabolismo , Ratones , Ratas , Receptores de Lipoproteína/metabolismo
11.
J Infect Dis ; 207(8): 1306-15, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23335805

RESUMEN

BACKGROUND: A major challenge for antiviral treatment of hepatitis C virus (HCV) infection is viral resistance, potentially resulting from the high variability of HCV envelope glycoproteins and subsequent selection of strains with enhanced infectivity and/or immune escape. METHODS: We used a bioinformatics and functional approach to investigate whether E1/E2 envelope glycoprotein structure and function were associated with treatment failure in 92 patients infected with HCV genotype 1. RESULTS: Bioinformatics analysis identified 1 sustain virological response (R)-related residue in E1 (219T) and 2 non-SVR (NR)-related molecular signatures in E2 (431A and 642V) in HCV genotype 1a. Two of these positions also appeared in minimal networks separating NR patients from R patients. HCV pseudoparticles (HCVpp) expressing 431A and 642V resulted in a decrease in antibody-mediated neutralization by pretreatment sera. 431A/HCVpp entry into Huh7.5 cells increased with overexpression of CD81 and SR-BI. Moreover, an association of envelope glycoprotein signatures with treatment failure was confirmed in an independent cohort (Virahep-C). CONCLUSIONS: Combined in silico and functional analyses demonstrate that envelope glycoprotein signatures associated with treatment failure result in an alteration of host cell entry factor use and escape from neutralizing antibodies, suggesting that virus-host interactions during viral entry contribute to treatment failure.


Asunto(s)
Biología Computacional/métodos , Hepatitis C/virología , Proteínas del Envoltorio Viral/genética , Internalización del Virus/efectos de los fármacos , Adulto , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Antivirales/farmacología , Femenino , Genotipo , Células HEK293 , Hepacivirus/clasificación , Hepacivirus/patogenicidad , Hepatitis C/tratamiento farmacológico , Hepatitis C/inmunología , Humanos , Evasión Inmune , Masculino , Persona de Mediana Edad , Mutagénesis Sitio-Dirigida , Mutación , Pruebas de Neutralización , Ribavirina/farmacología , Relación Estructura-Actividad , Insuficiencia del Tratamiento , Proteínas del Envoltorio Viral/inmunología
12.
J Hepatol ; 58(2): 375-84, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23041307

RESUMEN

Hepatitis C virus (HCV) infection is a major cause of chronic liver disease and hepatocellular carcinoma worldwide. Furthermore, HCV-induced liver disease is a major indication of liver transplantation. In the past years, direct-acting antivirals (DAAs) targeting HCV enzymes have been developed. DAAs increase the virologic response to anti-HCV therapy but may lead to selection of drug-resistant variants and treatment failure. To date, strategies to prevent HCV infection are still lacking and antiviral therapy in immunocompromised patients, patients with advanced liver disease and HIV/HCV-co-infection remains limited. Alternative or complementary approaches addressing the limitations of current antiviral therapies are to boost the host's innate immunity or interfere with host factors required for pathogenesis. Host-targeting agents (HTAs) provide an interesting perspective for novel antiviral strategies against viral hepatitis since they have (i) a high genetic barrier to resistance, (ii) a pan-genotypic antiviral activity, and (iii) complementary mechanisms of action to DAAs and might therefore act in a synergistic manner with current standard of care or DAAs in clinical development. This review highlights HTAs against HCV infection that have potential as novel antivirals and are in preclinical or clinical development.


Asunto(s)
Antivirales/uso terapéutico , Hepatitis C Crónica/tratamiento farmacológico , Hepatitis C Crónica/prevención & control , Genotipo , Hepacivirus/genética , Humanos , Resultado del Tratamiento
13.
Gastroenterology ; 143(1): 223-233.e9, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22503792

RESUMEN

BACKGROUND & AIMS: The development of vaccines and other strategies to prevent hepatitis C virus (HCV) infection is limited by rapid viral evasion. HCV entry is the first step of infection; this process involves several viral and host factors and is targeted by host-neutralizing responses. Although the roles of host factors in HCV entry have been well characterized, their involvement in evasion of immune responses is poorly understood. We used acute infection of liver graft as a model to investigate the molecular mechanisms of viral evasion. METHODS: We studied factors that contribute to evasion of host immune responses using patient-derived antibodies, HCV pseudoparticles, and cell culture-derived HCV that express viral envelopes from patients who have undergone liver transplantation. These viruses were used to infect hepatoma cell lines that express different levels of HCV entry factors. RESULTS: By using reverse genetic analyses, we identified altered use of host-cell entry factors as a mechanism by which HCV evades host immune responses. Mutations that alter use of the CD81 receptor also allowed the virus to escape neutralizing antibodies. Kinetic studies showed that these mutations affect virus-antibody interactions during postbinding steps of the HCV entry process. Functional studies with a large panel of patient-derived antibodies showed that this mechanism mediates viral escape, leading to persistent infection in general. CONCLUSIONS: We identified a mechanism by which HCV evades host immune responses, in which use of cell entry factors evolves with escape from neutralizing antibodies. These findings advance our understanding of the pathogenesis of HCV infection and might be used to develop antiviral strategies and vaccines.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Hepacivirus/genética , Hepatitis C/genética , Internalización del Virus , Línea Celular Tumoral , Hepacivirus/inmunología , Hepatitis C/inmunología , Humanos , Masculino , Mutación , Trasplantes/virología
14.
Microb Pathog ; 58: 66-72, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23499591

RESUMEN

Approximately 170 million individuals, representing 3% of the global population, are infected with hepatitis C virus (HCV). Whereas strategies for antiviral therapies have markedly improved resulting in clinical licensing of direct-acting antivirals, the development of vaccines has been hampered by the high genetic variability of the virus as well as by the lack of suitable animal models for proof-of-concept studies. Nevertheless, there are several promising vaccine candidates in preclinical and clinical development. After a brief summary of the molecular virology and immunology relevant to vaccine development, this review explains the model systems used for preclinical vaccine development, and highlights examples for most recently developed HCV vaccine candidates.


Asunto(s)
Hepacivirus/inmunología , Hepatitis C/prevención & control , Vacunas Virales/inmunología , Animales , Descubrimiento de Drogas/tendencias , Hepacivirus/genética , Hepacivirus/fisiología , Hepatitis C/inmunología , Vacunas Virales/genética
15.
J Hepatol ; 54(3): 566-76, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21146244

RESUMEN

Hepatitis C virus (HCV) is a major cause of liver cirrhosis and hepatocellular carcinoma. Preventive modalities are absent and the current antiviral treatment is limited by resistance, toxicity, and high costs. Viral entry is required for initiation, spread, and maintenance of infection, and thus is a promising target for antiviral therapy. HCV entry is a highly orchestrated process involving viral and host cell factors. These include the viral envelope glycoproteins E1 and E2, CD81, scavenger receptor BI, and tight junction proteins claudin-1 and occludin. Recent studies in preclinical models and HCV-infected patients have demonstrated that the virus has developed multiple strategies to escape host immune responses during viral entry. These include evasion from neutralizing antibodies and viral spread by cell-cell transmission. These challenges have to be taken into account for the design of efficient antiviral strategies. Thus, a detailed understanding of the mechanisms of viral entry and escape is a prerequisite to define viral and cellular targets and develop novel preventive and therapeutic antivirals. This review summarizes the current knowledge about the molecular mechanisms of HCV entry into hepatocytes, highlights novel targets and reviews the current preclinical and clinical development of compounds targeting entry. Proof-of-concept studies suggest that HCV entry inhibitors are a novel and promising class of antivirals widening the preventive and therapeutic arsenal against HCV infection.


Asunto(s)
Antivirales/farmacología , Hepacivirus/efectos de los fármacos , Hepacivirus/fisiología , Hepatocitos/virología , Internalización del Virus/efectos de los fármacos , Hepacivirus/inmunología , Hepacivirus/patogenicidad , Hepatitis C Crónica/tratamiento farmacológico , Hepatitis C Crónica/inmunología , Hepatitis C Crónica/prevención & control , Hepatitis C Crónica/virología , Hepatocitos/efectos de los fármacos , Hepatocitos/inmunología , Interacciones Huésped-Patógeno , Humanos , Evasión Inmune , Modelos Biológicos
16.
Gastroenterology ; 139(3): 953-64, 964.e1-4, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20685314

RESUMEN

BACKGROUND & AIMS: Hepatitis C virus (HCV) infection is a challenge to prevent and treat because of the rapid development of drug resistance and escape. Viral entry is required for initiation, spread, and maintenance of infection, making it an attractive target for antiviral strategies. The tight junction protein claudin-1 (CLDN1) has been shown to be required for entry of HCV into the cell. METHODS: Using genetic immunization, we produced 6 monoclonal antibodies against the host entry factor CLDN1. The effects of antibodies on HCV infection were analyzed in human cell lines and primary human hepatocytes. RESULTS: Competition and binding studies demonstrated that antibodies interacted with conformational epitopes of the first extracellular loop of CLDN1; binding of these antibodies required the motif W(30)-GLW(51)-C(54)-C(64) and residues in the N-terminal third of CLDN1. The monoclonal antibodies against CLDN1 efficiently inhibited infection by HCV of all major genotypes as well as highly variable HCV quasispecies isolated from individual patients. Furthermore, antibodies efficiently blocked cell entry of highly infectious escape variants of HCV that were resistant to neutralizing antibodies. CONCLUSIONS: Monoclonal antibodies against the HCV entry factor CLDN1 might be used to prevent HCV infection, such as after liver transplantation, and might also restrain virus spread in chronically infected patients.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Antivirales/farmacología , Hepacivirus/efectos de los fármacos , Hepatitis C/prevención & control , Hepatocitos/efectos de los fármacos , Proteínas de la Membrana/antagonistas & inhibidores , Internalización del Virus/efectos de los fármacos , Animales , Anticuerpos Monoclonales/metabolismo , Anticuerpos Monoclonales/toxicidad , Especificidad de Anticuerpos , Antivirales/metabolismo , Antivirales/toxicidad , Sitios de Unión de Anticuerpos , Unión Competitiva , Células CHO , Supervivencia Celular/efectos de los fármacos , Claudina-1 , Cricetinae , Cricetulus , Relación Dosis-Respuesta a Droga , Epítopos , Genotipo , Células Hep G2 , Hepacivirus/genética , Hepacivirus/patogenicidad , Hepatitis C/inmunología , Hepatocitos/inmunología , Hepatocitos/virología , Humanos , Proteínas de la Membrana/inmunología
17.
Nat Commun ; 12(1): 4882, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34385466

RESUMEN

Genetic variants of the interferon lambda (IFNL) gene locus are strongly associated with spontaneous and IFN treatment-induced clearance of hepatitis C virus (HCV) infections. Individuals with the ancestral IFNL4-dG allele are not able to clear HCV in the acute phase and have more than a 90% probability to develop chronic hepatitis C (CHC). Paradoxically, the IFNL4-dG allele encodes a fully functional IFNλ4 protein with antiviral activity against HCV. Here we describe an effect of IFNλ4 on HCV antigen presentation. Only minor amounts of IFNλ4 are secreted, because the protein is largely retained in the endoplasmic reticulum (ER) where it induces ER stress. Stressed cells are significantly weaker activators of HCV specific CD8+ T cells than unstressed cells. This is not due to reduced MHC I surface presentation or extracellular IFNλ4 effects, since T cell responses are restored by exogenous loading of MHC with HCV antigens. Rather, IFNλ4 induced ER stress impairs HCV antigen processing and/or loading onto the MHC I complex. Our results provide a potential explanation for the IFNλ4-HCV paradox.


Asunto(s)
Presentación de Antígeno/inmunología , Linfocitos T CD8-positivos/inmunología , Hepacivirus/inmunología , Interleucinas/inmunología , Activación de Linfocitos/inmunología , Células A549 , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/virología , Línea Celular Tumoral , Regulación de la Expresión Génica/inmunología , Genotipo , Células Hep G2 , Hepacivirus/genética , Hepacivirus/fisiología , Interacciones Huésped-Patógeno/inmunología , Humanos , Interleucinas/genética , Interleucinas/metabolismo
18.
PLoS One ; 14(8): e0221762, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31465481

RESUMEN

BACKGROUND & AIMS: Hepatocyte-like cells (HLCs) differentiated from induced pluripotent stem cells (iPSCs) have emerged as a promising cell culture model to study metabolism, biotransformation, viral infections and inherited liver diseases. iPSCs provide an unlimited supply for the generation of HLCs, but incomplete HLC differentiation remains a major challenge. iPSC may carry-on a tissue of origin dependent expression memory influencing iPSC differentiation into different cell types. Whether liver derived iPSCs (Li-iPSCs) would allow the generation of more fully differentiated HLCs is not known. METHODS: In the current study, we used primary liver cells (PLCs) expanded from liver needle biopsies and reprogrammed them into Li-iPSCs using a non-integrative Sendai virus-based system. Li-iPSCs were differentiated into HLCs using established differentiation protocols. The HLC phenotype was characterized at the protein, functional and transcriptional level. RNA sequencing data were generated from the originating liver biopsies, the Li-iPSCs, fibroblast derived iPSCs, and differentiated HLCs, and used to characterize and compare their transcriptome profiles. RESULTS: Li-iPSCs indeed retain a liver specific transcriptional footprint. Li-iPSCs can be propagated to provide an unlimited supply of cells for differentiation into Li-HLCs. Similar to HLCs derived from fibroblasts, Li-HLCs could not be fully differentiated into hepatocytes. Relative to the originating liver, Li-HLCs showed lower expression of liver specific transcription factors and increased expression of genes involved in the differentiation of other tissues. CONCLUSIONS: PLCs and Li-iPSCs obtained from small pieces of human needle liver biopsies constitute a novel unlimited source for the production of HLCs. Despite the preservation of a liver specific gene expression footprint in Li-iPSCs, the generation of fully differentiated hepatocytes cannot be achieved with the current differentiation protocols.


Asunto(s)
Hepatocitos/citología , Células Madre Pluripotentes Inducidas/citología , Hígado/patología , Animales , Biomarcadores/metabolismo , Biopsia , Diferenciación Celular/genética , Proliferación Celular , Células Cultivadas , Reprogramación Celular , Análisis por Conglomerados , Fibroblastos/citología , Regulación de la Expresión Génica , Hepatocitos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones SCID , Análisis de Componente Principal , Factores de Transcripción/metabolismo , Transcripción Genética
19.
Hepatol Commun ; 3(7): 971-986, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31334445

RESUMEN

Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related deaths worldwide. Treatment options for patients with advanced-stage disease are limited. A major obstacle in drug development is the lack of an in vivo model that accurately reflects the broad spectrum of human HCC. Patient-derived xenograft (PDX) tumor mouse models could overcome the limitations of cancer cell lines. PDX tumors maintain the genetic and histologic heterogeneity of the originating tumors and are used for preclinical drug development in various cancers. Controversy exists about their genetic and molecular stability through serial passaging in mice. We aimed to establish PDX models from human HCC biopsies and to characterize their histologic and molecular stability during serial passaging. A total of 54 human HCC needle biopsies that were derived from patients with various underlying liver diseases and tumor stages were transplanted subcutaneously into immunodeficient, nonobese, diabetic/severe combined immunodeficiency gamma-c mice; 11 successfully engrafted. All successfully transplanted HCCs were Edmondson grade III or IV. HCC PDX tumors retained the histopathologic, transcriptomic, and genomic characteristics of the original HCC biopsies over 6 generations of retransplantation. These characteristics included Edmondson grade, expression of tumor markers, tumor gene signature, tumor-associated mutations, and copy number alterations. Conclusion: PDX mouse models can be established from undifferentiated HCCs, with an overall success rate of approximately 20%. The transplanted tumors represent the entire spectrum of the molecular landscape of HCCs and preserve the characteristics of the originating tumors through serial passaging. HCC PDX models are a promising tool for preclinical personalized drug development.

20.
Cell Rep ; 24(5): 1363-1376, 2018 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-30067989

RESUMEN

Hepatocellular carcinoma (HCC) is the most common primary liver cancer and the second most frequent cause of cancer-related mortality worldwide. The multikinase inhibitor sorafenib is the only treatment option for advanced HCC. Due to tumor heterogeneity, its efficacy greatly varies between patients and is limited due to adverse effects and drug resistance. Current in vitro models fail to recapitulate key features of HCCs. We report the generation of long-term organoid cultures from tumor needle biopsies of HCC patients with various etiologies and tumor stages. HCC organoids retain the morphology as well as the expression pattern of HCC tumor markers and preserve the genetic heterogeneity of the originating tumors. In a proof-of-principle study, we show that liver cancer organoids can be used to test sensitivity to sorafenib. In conclusion, organoid models can be derived from needle biopsies of liver cancers and provide a tool for developing tailored therapies.


Asunto(s)
Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Organoides/patología , Anciano , Anciano de 80 o más Años , Animales , Células Cultivadas , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Técnicas de Cultivo de Tejidos/métodos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda