Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Nat Med ; 12(2): 181-9, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16429145

RESUMEN

The myofilament protein troponin I (TnI) has a key isoform-dependent role in the development of contractile failure during acidosis and ischemia. Here we show that cardiac performance in vitro and in vivo is enhanced when a single histidine residue present in the fetal cardiac TnI isoform is substituted into the adult cardiac TnI isoform at codon 164. The most marked effects are observed under the acute challenges of acidosis, hypoxia, ischemia and ischemia-reperfusion, in chronic heart failure in transgenic mice and in myocytes from failing human hearts. In the isolated heart, histidine-modified TnI improves systolic and diastolic function and mitigates reperfusion-associated ventricular arrhythmias. Cardiac performance is markedly enhanced in transgenic hearts during reperfusion despite a high-energy phosphate content similar to that in nontransgenic hearts, providing evidence for greater energetic economy. This pH-sensitive 'histidine button' engineered in TnI produces a titratable molecular switch that 'senses' changes in the intracellular milieu of the cardiac myocyte and responds by preferentially augmenting acute and long-term function under pathophysiological conditions. Myofilament-based inotropy may represent a therapeutic avenue to improve myocardial performance in the ischemic and failing heart.


Asunto(s)
Insuficiencia Cardíaca/metabolismo , Isquemia Miocárdica/metabolismo , Troponina I/química , Troponina I/metabolismo , Sustitución de Aminoácidos , Animales , Calcio/metabolismo , Metabolismo Energético , Técnicas de Transferencia de Gen , Terapia Genética , Insuficiencia Cardíaca/terapia , Histidina/química , Concentración de Iones de Hidrógeno , Técnicas In Vitro , Ratones , Ratones Transgénicos , Isquemia Miocárdica/terapia , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/terapia , Miocitos Cardíacos/metabolismo , Ingeniería de Proteínas , Ratas , Troponina I/genética
2.
Circ Res ; 100(8): 1182-90, 2007 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-17363698

RESUMEN

Increased relative expression of the slow molecular motor of the heart (beta-myosin heavy chain [MyHC]) is well known to occur in many rodent models of cardiovascular disease and in human heart failure. The direct effect of increased relative beta-MyHC expression on intact cardiac myocyte contractility, however, is unclear. To determine the direct effects of increased relative beta-MyHC expression on cardiac contractility, we used acute genetic engineering with a recombinant adenoviral vector (AdMYH7) to genetically titrate beta-MyHC protein expression in isolated rodent ventricular cardiac myocytes that predominantly expressed alpha-MyHC (fast molecular motor). AdMYH7-directed beta-MyHC protein expression and sarcomeric incorporation was observed as soon as 1 day after gene transfer. Effects of beta-MyHC expression on myocyte contractility were determined in electrically paced single myocytes (0.2 Hz, 37 degrees C) by measuring sarcomere shortening and intracellular calcium cycling. Gene transfer-based replacement of alpha-MyHC with beta-MyHC attenuated contractility in a dose-dependent manner, whereas calcium transients were unaffected. For example, when beta-MyHC expression accounted for approximately 18% of the total sarcomeric myosin, the amplitude of sarcomere-length shortening (nanometers, nm) was depressed by 42% (151.0+/-10.7 [control] versus 87.0+/-5.4 nm [AdMYH7 transduced]); and genetic titration of beta-MyHC, leading to 38% beta-MyHC content, attenuated shortening by 57% (138.9+/-13.0 versus 59.7+/-7.1 nm). Maximal isometric cross-bridge cycling rate was also slower in AdMYH7-transduced myocytes. Results indicate that small increases of beta-MyHC expression (18%) have Ca2+ transient-independent physiologically relevant effects to decrease intact cardiac myocyte function. We conclude that beta-MyHC is a negative inotrope among the cardiac myofilament proteins.


Asunto(s)
Calcio/fisiología , Técnicas de Transferencia de Gen , Contracción Miocárdica/genética , Miocitos Cardíacos/fisiología , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Miosinas Ventriculares/genética , Miosinas Ventriculares/metabolismo , Animales , Células Cultivadas , Regulación de la Expresión Génica/fisiología , Contracción Miocárdica/fisiología , Miocitos Cardíacos/metabolismo , Cadenas Pesadas de Miosina/fisiología , Ratas , Miosinas Ventriculares/fisiología
3.
Mol Ther ; 16(9): 1594-601, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18578010

RESUMEN

High-fidelity genetically encoded bio-sensors that respond to changes in cellular environmental milieu in disease offer great potential in a range of patho-physiological settings. Here a unique hypoxia-regulated vector-based system with double oxygen-sensing transcriptional elements was developed for rapid and robust hypoxia-regulated gene expression in the heart. Hypoxia-responsive cis elements were used in tandem with a single proline-modified oxygen-dependent degradation (ODD) domain of hypoxia-inducible factor-1alpha to form a double oxygen-sensing vector system (DOSVS). In adult cardiac myocytes in vitro, the DOSVS demonstrated a low background expression not different from baseline control in normoxia, and with 100% efficiency, robust, 1,000-fold induction upon hypoxia. In the heart in vivo, hypoxic and ischemic challenges elicited rapid 700-fold induction in living animals, exceeding that obtained by a high-fidelity constitutive cytomegalovirus (CMV) viral promoter. DOSVS also showed high temporal resolution in the heart in response to cyclical bouts of hypoxia in vivo. We propose that DOSVS will be valuable for a range of applications, including bio-sensing and therapeutic gene expression in the heart and other organ systems that are confronted by chronic or episodic hypoxic/ischemic stresses in vivo.


Asunto(s)
Vectores Genéticos , Subunidad alfa del Factor 1 Inducible por Hipoxia/uso terapéutico , Hipoxia/terapia , Isquemia/terapia , Miocardio/metabolismo , Oxígeno/metabolismo , Transducción Genética , Animales , Células Cultivadas , Citomegalovirus/genética , Regulación de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Humanos , Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Técnicas In Vitro , Isquemia/genética , Luciferasas/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Regiones Promotoras Genéticas/genética , Ratas , Ratas Sprague-Dawley , Elementos de Respuesta/genética , Activación Transcripcional
4.
Microb Pathog ; 44(4): 279-85, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17997273

RESUMEN

Chlamydophila (Chlamydia) pneumoniae is an intracellular respiratory pathogen known to cause community-acquired pneumonia. Infection with this organism has been associated with atherosclerosis, inflammatory arthritis, and other chronic diseases, many of which also have been associated with possession of the epsilon4 allele at the APOE locus on (human) chromosome 19. An earlier study from this laboratory suggested that some relationship exists between apolipoprotein E4 (apoE4), the product of the epsilon4 allele, and the pathobiology of C. pneumoniae. A standard attachment assay and real time PCR targeting a sequence on the C. pneumoniae chromosome were used to monitor host cell binding of elementary bodies (EB) of that organism. Our data indicate that 3-fold more EB of strain AR-39 attach to an epsilon3 homozygous human cell line transfected with a plasmid expressing the epsilon4 coding sequence than to the same cell line harboring empty vector, vector containing an irrelevant insert sequence, or vector containing the DNA sequence encoding apoE3. The quantitative real time data were confirmed by immunolabeling of chlamydial inclusions in parallel attachment and infection assays. Experiments using Chlamydophila trachomatis EB showed no enhancement of attachment in the presence of the epsilon4 allele in any assays. These observations indicate that apoE4 enhances attachment of C. pneumoniae EB, but not those of C. trachomatis, to target host cells.


Asunto(s)
Apolipoproteína E4/metabolismo , Adhesión Bacteriana , Infecciones por Chlamydophila/microbiología , Chlamydophila pneumoniae/fisiología , Interacciones Huésped-Patógeno , Alelos , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Apolipoproteína E4/genética , Línea Celular , Chlamydia trachomatis/genética , Chlamydia trachomatis/crecimiento & desarrollo , Chlamydia trachomatis/fisiología , Infecciones por Chlamydophila/genética , Chlamydophila pneumoniae/genética , Chlamydophila pneumoniae/crecimiento & desarrollo , Cromosomas Bacterianos , Cromosomas Humanos Par 19 , ADN Bacteriano/genética , Genotipo , Humanos , Inmunoquímica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
5.
J Cardiovasc Transl Res ; 1(4): 317-27, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19956787

RESUMEN

Acquired and inherited diseases of the heart represent a major health care issue in this country and throughout the World. Clinical medicine has made important advancements in the past quarter century to enable several effective treatment regimes for cardiac patients. Nevertheless, it is apparent that even with the best care, current treatment strategies and therapeutics are inadequate for treating heart disease, leaving it arguably the most pressing health issue today. In this context it is important to seek new approaches to redress the functional deficits in failing myocardium. This review focuses on several recent gene, cell and chemical-based experimental therapeutics currently being developed in the laboratory for potential translation to patient care. For example, new advances in bio-sensing inducible gene expression systems offer the potential for designer cardio-protective proteins to be expressed only during hypoxia/ischemia in the heart. Stem cells continue to offer the promise of cardiac repair, and some recent advances are discussed here. In addition, discovery and applications of synthetic polymers are presented as a chemical-based strategy for acute and chronic treatment of diseased and failing cardiac tissue. Collectively, these approaches serve as the front lines in basic biomedical research, with an eye toward translation of these findings to clinically meaningful applications in cardiac disease.


Asunto(s)
Cardiología/métodos , Fármacos Cardiovasculares/uso terapéutico , Trasplante de Células , Terapia Genética , Insuficiencia Cardíaca/terapia , Investigación Biomédica Traslacional/métodos , Animales , Técnicas Biosensibles , Proteínas de Unión al Calcio/genética , Expresión Génica , Técnicas de Transferencia de Gen , Humanos , Proteínas Musculares/metabolismo , Miocardio/metabolismo , Sarcómeros/metabolismo , Trasplante de Células Madre
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda