Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
PLoS Pathog ; 20(7): e1012039, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38950065

RESUMEN

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) not only caused the COVID-19 pandemic but also had a major impact on farmed mink production in several European countries. In Denmark, the entire population of farmed mink (over 15 million animals) was culled in late 2020. During the period of June to November 2020, mink on 290 farms (out of about 1100 in the country) were shown to be infected with SARS-CoV-2. Genome sequencing identified changes in the virus within the mink and it is estimated that about 4000 people in Denmark became infected with these mink virus variants. However, the routes of transmission of the virus to, and from, the mink have been unclear. Phylogenetic analysis revealed the generation of multiple clusters of the virus within the mink. Detailed analysis of changes in the virus during replication in mink and, in parallel, in the human population in Denmark, during the same time period, has been performed here. The majority of cases in mink involved variants with the Y453F substitution and the H69/V70 deletion within the Spike (S) protein; these changes emerged early in the outbreak. However, further introductions of the virus, by variants lacking these changes, from the human population into mink also occurred. Based on phylogenetic analysis of viral genome data, we estimate, using a conservative approach, that about 17 separate examples of mink to human transmission occurred in Denmark but up to 59 such events (90% credible interval: (39-77)) were identified using parsimony to count cross-species jumps on transmission trees inferred using Bayesian methods. Using the latter approach, 136 jumps (90% credible interval: (117-164)) from humans to mink were found, which may underlie the farm-to-farm spread. Thus, transmission of SARS-CoV-2 from humans to mink, mink to mink, from mink to humans and between humans were all observed.

2.
PLoS Pathog ; 17(11): e1010068, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34780574

RESUMEN

Mink, on a farm with about 15,000 animals, became infected with SARS-CoV-2. Over 75% of tested animals were positive for SARS-CoV-2 RNA in throat swabs and 100% of tested animals were seropositive. The virus responsible had a deletion of nucleotides encoding residues H69 and V70 within the spike protein gene as well as the A22920T mutation, resulting in the Y453F substitution within this protein, seen previously in mink. The infected mink recovered and after free-testing of 300 mink (a level giving 93% confidence of detecting a 1% prevalence), the animals remained seropositive. During further follow-up studies, after a period of more than 2 months without any virus detection, over 75% of tested animals again scored positive for SARS-CoV-2 RNA. Whole genome sequencing showed that the viruses circulating during this re-infection were most closely related to those identified in the first outbreak on this farm but additional sequence changes had occurred. Animals had much higher levels of anti-SARS-CoV-2 antibodies in serum samples after the second round of infection than at free-testing or during recovery from initial infection, consistent with a boosted immune response. Thus, it was concluded that following recovery from an initial infection, seropositive mink were readily re-infected by SARS-CoV-2.


Asunto(s)
COVID-19/veterinaria , COVID-19/virología , Visón/inmunología , Visón/virología , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Prueba de Ácido Nucleico para COVID-19 , Prueba Serológica para COVID-19 , Granjas , Estudios de Seguimiento , Humanos , Mutación , Faringe/virología , Filogenia , ARN Viral , Reinfección/virología , Secuenciación Completa del Genoma
3.
Euro Surveill ; 28(29)2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37470739

RESUMEN

BackgroundThe COVID-19 pandemic was of major concern in Greenland. There was a high possibility of rapid transmission in settlements, and an increased risk of morbidity and mortality because of comorbidities in the population and limited access to specialised healthcare in remote areas.AimTo describe the epidemiology of the COVID-19 pandemic in Greenland and evaluate the effects of a strict COVID-19 strategy until risk groups were immunised.MethodsWe studied the epidemiology during March 2020 to June 2022. We describe the non-pharmaceutical interventions (NPIs), PCR-confirmed COVID-19 cases and vaccination coverage with data from the registries of the Greenlandic health authority.ResultsWe found 21,419 confirmed cases per 100,000 inhabitants (54% female, 46% male), 342 per 100,000 were hospitalised and 16 per 100,000 were admitted to the intensive care unit. The COVID-19 mortality rate was 39 per 100,000, all those affected were aged above 65 years. No excess overall mortality was observed. The vaccination coverage by June 2022 was 71.67 and 41% for one, two and three doses, respectively.ConclusionSARS-CoV-2 circulation in Greenland was low, given strict restrictions until all eligible inhabitants had been offered immunisation. The main impact of the pandemic was from May 2021 onwards with increasing numbers of confirmed cases. This occurred after introduction of the vaccine programme, which may have had an influence on the severity of the associated morbidity and mortality experienced. Halting community transmission of SARS-CoV-2 with NPIs until the majority of the population had been immunised was a successful strategy in Greenland.


Asunto(s)
COVID-19 , Masculino , Humanos , Femenino , Anciano , COVID-19/epidemiología , Pandemias/prevención & control , SARS-CoV-2 , Groenlandia/epidemiología , Factores de Riesgo
4.
PLoS Med ; 19(9): e1003992, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36048766

RESUMEN

BACKGROUND: The continued occurrence of more contagious Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants and waning immunity over time require ongoing reevaluation of the vaccine effectiveness (VE). This study aimed to estimate the effectiveness in 2 age groups (12 to 59 and 60 years or above) of 2 or 3 vaccine doses (BNT162b2 mRNA or mRNA-1273) by time since vaccination against SARS-CoV-2 infection and Coronavirus Disease 2019 (COVID-19) hospitalization in an Alpha-, Delta-, or Omicron-dominated period. METHODS AND FINDINGS: A Danish nationwide cohort study design was used to estimate VE against SARS-CoV-2 infection and COVID-19 hospitalization with the Alpha, Delta, or Omicron variant. Information was obtained from nationwide registries and linked using a unique personal identification number. The study included all previously uninfected residents in Denmark aged 12 years or above (18 years or above for the analysis of 3 doses) in the Alpha (February 20 to June 15, 2021), Delta (July 4 to November 20, 2021), and Omicron (December 21, 2021 to January 31, 2022) dominated periods. VE estimates including 95% confidence intervals (CIs) were calculated (1-hazard ratio∙100) using Cox proportional hazard regression models with underlying calendar time and adjustments for age, sex, comorbidity, and geographical region. Vaccination status was included as a time-varying exposure. In the oldest age group, VE against infection after 2 doses was 90.7% (95% CI: 88.2; 92.7) for the Alpha variant, 82.3% (95% CI: 75.5; 87.2) for the Delta variant, and 39.9% (95% CI: 26.3; 50.9) for the Omicron variant 14 to 30 days since vaccination. The VE waned over time and was 73.2% (Alpha, 95% CI: 57.1; 83.3), 50.0% (Delta, 95% CI: 46.7; 53.0), and 4.4% (Omicron, 95% CI: -0.1; 8.7) >120 days since vaccination. Higher estimates were observed after the third dose with VE estimates against infection of 86.1% (Delta, 95% CI: 83.3; 88.4) and 57.7% (Omicron, 95% CI: 55.9; 59.5) 14 to 30 days since vaccination. Among both age groups, VE against COVID-19 hospitalization 14 to 30 days since vaccination with 2 or 3 doses was 98.1% or above for the Alpha and Delta variants. Among both age groups, VE against COVID-19 hospitalization 14 to 30 days since vaccination with 2 or 3 doses was 95.5% or above for the Omicron variant. The main limitation of this study is the nonrandomized study design including potential differences between the unvaccinated (reference group) and vaccinated individuals. CONCLUSIONS: Two vaccine doses provided high protection against SARS-CoV-2 infection and COVID-19 hospitalization with the Alpha and Delta variants with protection, notably against infection, waning over time. Two vaccine doses provided only limited and short-lived protection against SARS-CoV-2 infection with Omicron. However, the protection against COVID-19 hospitalization following Omicron SARS-CoV-2 infection was higher. The third vaccine dose substantially increased the level and duration of protection against infection with the Omicron variant and provided a high level of sustained protection against COVID-19 hospitalization among the +60-year-olds.


Asunto(s)
COVID-19 , Vacunas Virales , Vacuna BNT162 , COVID-19/epidemiología , COVID-19/prevención & control , Estudios de Cohortes , Dinamarca/epidemiología , Hospitalización , Humanos , SARS-CoV-2/genética , Eficacia de las Vacunas
5.
Epidemiol Infect ; 150: e123, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35317884

RESUMEN

Denmark hosted four games during the 2020 UEFA European championships (EC2020). After declining positive SARS-CoV-2 test rates in Denmark, a rise occurred during and after the tournament, concomitant with the replacement of the dominant Alpha lineage (B.1.1.7) by the Delta lineage (B.1.617.2), increasing vaccination rates and cessation of several restrictions. A cohort study including 33 227 cases was conducted from 30 May to 25 July 2021, 14 days before and after the EC2020. Included was a nested cohort with event information from big-screen events and matches at the Danish national stadium, Parken (DNSP) in Copenhagen, held from 12 June to 28 June 2021. Information from whole-genome sequencing, contact tracing and Danish registries was collected. Case-case connections were used to establish transmission trees. Cases infected on match days were compared to cases not infected on match days as a reference. The crude incidence rate ratio (IRR) of transmissions was 1.55, corresponding to 584 (1.76%) cases attributable to EC2020 celebrations. The IRR adjusted for covariates was lower (IRR 1.41) but still significant, and also pointed to a reduced number of transmissions from fully vaccinated cases (IRR 0.59). These data support the hypothesis that the EC2020 celebrations contributed to the rise of cases in Denmark in the early summer of 2021.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Estudios de Cohortes , Dinamarca/epidemiología , Humanos
6.
Euro Surveill ; 27(10)2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35272746

RESUMEN

Following emergence of the SARS-CoV-2 variant Omicron in November 2021, the dominant BA.1 sub-lineage was replaced by the BA.2 sub-lineage in Denmark. We analysed the first 2,623 BA.2 cases from 29 November 2021 to 2 January 2022. No epidemiological or clinical differences were found between individuals infected with BA.1 versus BA.2. Phylogenetic analyses showed a geographic east-to-west transmission of BA.2 from the Capital Region with clusters expanding after the Christmas holidays. Mutational analysis shows distinct differences between BA.1 and BA.2.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Dinamarca/epidemiología , Humanos , Epidemiología Molecular , Filogenia , SARS-CoV-2/genética
7.
Euro Surveill ; 27(36)2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36082686

RESUMEN

Following the report of a non-travel-associated cluster of monkeypox cases by the United Kingdom in May 2022, 41 countries across the WHO European Region have reported 21,098 cases and two deaths by 23 August 2022. Nowcasting suggests a plateauing in case notifications. Most cases (97%) are MSM, with atypical rash-illness presentation. Spread is mainly through close contact during sexual activities. Few cases are reported among women and children. Targeted interventions of at-risk groups are needed to stop further transmission.


Asunto(s)
Exantema , Mpox , Animales , Niño , Brotes de Enfermedades , Femenino , Humanos , Mpox/diagnóstico , Mpox/epidemiología , Monkeypox virus , Organización Mundial de la Salud
8.
Emerg Infect Dis ; 27(2): 547-551, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33207152

RESUMEN

Severe acute respiratory syndrome coronavirus 2 has caused a pandemic in humans. Farmed mink (Neovison vison) are also susceptible. In Denmark, this virus has spread rapidly among farmed mink, resulting in some respiratory disease. Full-length virus genome sequencing revealed novel virus variants in mink. These variants subsequently appeared within the local human community.


Asunto(s)
COVID-19/transmisión , Transmisión de Enfermedad Infecciosa/veterinaria , Visón/virología , SARS-CoV-2/genética , Zoonosis Virales/transmisión , Animales , COVID-19/veterinaria , COVID-19/virología , Dinamarca/epidemiología , Granjas , Humanos , Zoonosis Virales/virología
9.
Euro Surveill ; 26(47)2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34823639

RESUMEN

BackgroundDespite availability of pre-exposure prophylaxis (PrEP), the incidence of HIV-1 in Europe remained stable the past decade. Reduction of new HIV-1 infections requires more knowledge about the profiles of high-risk transmitters and late presenters (LP).AimWe aimed to investigate risk factors associated with HIV-1 transmission clusters and late presentation with HIV-1 in Denmark.MethodsBlood samples and epidemiological information were collected from newly diagnosed HIV-1 patients between 2009 and 2017. We genotyped pol genes and performed phylogenetic analyses to identify clusters. Risk factors for clustering and LP were investigated with partial proportional odds and logistic regression. Covariates included transmission mode, HIV-1 subtype, age, origin and cluster activity.ResultsWe included 1,040 individuals in the analysis, 59.6% identified with subtype B and 48.4% in a cluster. Risk factors for clustering included Danish origin (odds ratio (OR): 2.95; 95% confidence interval (CI): 2.21-3.96), non-LP (OR: 1.44; 95% CI: 1.12-1.86), and men who have sex with men (MSM). Increasing age and non-B subtype infection decreased risk (OR: 0.69; 95% CI: 0.50-0.94). Risk for late presentation was lower for active clusters (OR: 0.60; 95% CI: 0.44-0.82) and Danish origin (OR: 0.43; 95% CI: 0.27-0.67). Non-Danish MSM had a lower risk than non-Danish heterosexuals (OR: 0.34; 95% CI: 0.21-0.55).ConclusionHIV-1 transmission in Denmark is driven by early diagnosed, young, subtype B infected MSM. These may benefit most from PrEP. Non-Danish heterosexual HIV-1 patients could benefit from improved communication to achieve earlier diagnosis and treatment.


Asunto(s)
Infecciones por VIH , VIH-1 , Profilaxis Pre-Exposición , Minorías Sexuales y de Género , Dinamarca/epidemiología , Infecciones por VIH/epidemiología , VIH-1/genética , Homosexualidad Masculina , Humanos , Masculino , Filogenia , Factores de Riesgo
10.
Euro Surveill ; 26(49)2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34886943

RESUMEN

Several factors may account for the recent increased spread of the SARS-CoV-2 Delta sub-lineage AY.4.2 in the United Kingdom, Romania, Poland, and Denmark. We evaluated the sensitivity of AY.4.2 to neutralisation by sera from 30 Comirnaty (BNT162b2 mRNA) vaccine recipients in Denmark in November 2021. AY.4.2 neutralisation was comparable to other circulating Delta lineages or sub-lineages. Conversely, the less prevalent B.1.617.2 with E484K showed a significant more than 4-fold reduction in neutralisation that warrants surveillance of strains with the acquired E484K mutation.


Asunto(s)
COVID-19 , Vacunas , Vacuna BNT162 , Vacunas contra la COVID-19 , Dinamarca , Humanos , Mutación , ARN Mensajero , SARS-CoV-2
11.
Euro Surveill ; 26(5)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33541485

RESUMEN

In June-November 2020, SARS-CoV-2-infected mink were detected in 290 of 1,147 Danish mink farms. In North Denmark Region, 30% (324/1,092) of people found connected to mink farms tested SARS-CoV-2-PCR-positive and approximately 27% (95% confidence interval (CI): 25-30) of SARS-CoV-2-strains from humans in the community were mink-associated. Measures proved insufficient to mitigate spread. On 4 November, the government ordered culling of all Danish mink. Farmed mink constitute a potential virus reservoir challenging pandemic control.


Asunto(s)
Animales Salvajes/virología , COVID-19/epidemiología , COVID-19/veterinaria , Brotes de Enfermedades/veterinaria , Reservorios de Enfermedades/veterinaria , Transmisión de Enfermedad Infecciosa/veterinaria , Visón/virología , Pandemias/veterinaria , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Zoonosis Virales/transmisión , Animales , COVID-19/transmisión , COVID-19/virología , Prueba de Ácido Nucleico para COVID-19 , Dinamarca/epidemiología , Brotes de Enfermedades/estadística & datos numéricos , Reservorios de Enfermedades/virología , Granjas , Genes Virales , Humanos , Incidencia , Reacción en Cadena de la Polimerasa , Salud Pública , ARN Viral/análisis , ARN Viral/genética , SARS-CoV-2/clasificación , Zoonosis Virales/virología , Secuenciación Completa del Genoma , Zoonosis/transmisión , Zoonosis/virología
12.
Euro Surveill ; 26(50)2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34915977

RESUMEN

By 9 December 2021, 785 SARS-CoV-2 Omicron variant cases have been identified in Denmark. Most cases were fully (76%) or booster-vaccinated (7.1%); 34 (4.3%) had a previous SARS-CoV-2 infection. The majority of cases with available information reported symptoms (509/666; 76%) and most were infected in Denmark (588/644; 91%). One in five cases cannot be linked to previous cases, indicating widespread community transmission. Nine cases have been hospitalised, one required intensive care and no deaths have been registered.


Asunto(s)
COVID-19 , SARS-CoV-2 , Dinamarca/epidemiología , Humanos
14.
Euro Surveill ; 24(19)2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31088600

RESUMEN

BackgroundA steady increase in HIV drug resistance (HIVDR) has been demonstrated globally in individuals initiating first-line antiretroviral therapy (ART). To support effective use of ART and prevent spread of HIVDR, monitoring is essential.AimWe piloted a surveillance system for transmitted HIVDR to assess the feasibility of implementation at the European level.MethodAll 31 countries in the European Union and European Economic Area were invited to retrospectively submit data on individuals newly diagnosed with HIV in 2015 who were tested for antiviral susceptibility before ART, either as case-based or as aggregate data. We used the Stanford HIV database algorithm to translate genetic sequences into levels of drug resistance.ResultsNine countries participated, with six reporting case-based data on 1,680 individuals and four reporting aggregated data on 1,402 cases. Sequence data were available for 1,417 cases: 14.5% of individuals (n = 244) showed resistance to at least one antiretroviral drug. In case-based surveillance, the highest levels of transmitted HIVDR were observed for non-nucleoside reverse-transcriptase inhibitors (NNRTIs) with resistance detected in 8.6% (n = 145), followed by resistance to nucleoside reverse-transcriptase inhibitors (NRTI) (5.1%; n = 85) and protease inhibitors (2.0%; n = 34).ConclusionWe conclude that standard reporting of HIVDR data was feasible in the participating countries. Legal barriers for data sharing, consensus on definitions and standardisation of interpretation algorithms should be clarified in the process of enhancing European-wide HIV surveillance with drug resistance information.


Asunto(s)
Fármacos Anti-VIH/farmacología , Farmacorresistencia Viral/genética , Infecciones por VIH/tratamiento farmacológico , VIH-1/efectos de los fármacos , Adulto , Fármacos Anti-VIH/uso terapéutico , Europa (Continente)/epidemiología , Unión Europea , Estudios de Factibilidad , Femenino , Infecciones por VIH/epidemiología , Infecciones por VIH/virología , VIH-1/genética , Humanos , Masculino , Proyectos Piloto , Polimorfismo Genético , Vigilancia de la Población , Prevalencia
16.
PLoS Pathog ; 12(11): e1005917, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27851824

RESUMEN

Many variant proteins encoded by Plasmodium-specific multigene families are exported into red blood cells (RBC). P. falciparum-specific variant proteins encoded by the var, stevor and rifin multigene families are exported onto the surface of infected red blood cells (iRBC) and mediate interactions between iRBC and host cells resulting in tissue sequestration and rosetting. However, the precise function of most other Plasmodium multigene families encoding exported proteins is unknown. To understand the role of RBC-exported proteins of rodent malaria parasites (RMP) we analysed the expression and cellular location by fluorescent-tagging of members of the pir, fam-a and fam-b multigene families. Furthermore, we performed phylogenetic analyses of the fam-a and fam-b multigene families, which indicate that both families have a history of functional differentiation unique to RMP. We demonstrate for all three families that expression of family members in iRBC is not mutually exclusive. Most tagged proteins were transported into the iRBC cytoplasm but not onto the iRBC plasma membrane, indicating that they are unlikely to play a direct role in iRBC-host cell interactions. Unexpectedly, most family members are also expressed during the liver stage, where they are transported into the parasitophorous vacuole. This suggests that these protein families promote parasite development in both the liver and blood, either by supporting parasite development within hepatocytes and erythrocytes and/or by manipulating the host immune response. Indeed, in the case of Fam-A, which have a steroidogenic acute regulatory-related lipid transfer (START) domain, we found that several family members can transfer phosphatidylcholine in vitro. These observations indicate that these proteins may transport (host) phosphatidylcholine for membrane synthesis. This is the first demonstration of a biological function of any exported variant protein family of rodent malaria parasites.


Asunto(s)
Hepatocitos/virología , Malaria Falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Animales , Modelos Animales de Enfermedad , Eritrocitos/parasitología , Técnica del Anticuerpo Fluorescente , Humanos , Hígado , Malaria Falciparum/virología , Ratones , Familia de Multigenes , Organismos Modificados Genéticamente , Filogenia , Plasmodium falciparum , Transporte de Proteínas , Vacuolas/virología
17.
Euro Surveill ; 23(44)2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30401010

RESUMEN

This study describes the prevalence of human immunodeficiency virus (HIV) drug resistance mutations among 1,815 patients in Denmark from 2004 to 2016 and characterises transmission clusters. POL sequences were analysed for subtype, drug resistance mutations and phylogenetic relationship. The prevalence of surveillance drug resistance mutations (SDRM) was 6.7%, while the prevalence of drug resistance mutations (DRM) with a clinical impact was 12.3%. We identified 197 transmission clusters with 706 patients. Patients 40 years or older were less likely to be members of a transmission cluster and patients in transmission clusters were less likely to be infected abroad. The proportion of late presenters (LP) was lower in active compared with inactive clusters. Large active clusters consisted of more men who have sex with men (MSM), had members more frequently infected in Denmark and contained a significantly lower proportion of LP and significantly fewer patients with DRM than small active clusters. Subtyping demonstrated that the Danish HIV epidemic is gradually becoming more composed of non-B subtypes/circulating recombinant forms. This study shows that active HIV-1 transmission has become increasingly MSM-dominated and that the recent increase in SDRM and DRM prevalence is not associated with more sustained transmission within identified transmission networks or clusters.


Asunto(s)
Fármacos Anti-VIH/farmacología , Farmacorresistencia Viral/genética , Infecciones por VIH/transmisión , Infecciones por VIH/virología , VIH-1/efectos de los fármacos , VIH-1/genética , Productos del Gen pol del Virus de la Inmunodeficiencia Humana/genética , Adolescente , Adulto , Anciano , Análisis por Conglomerados , Dinamarca/epidemiología , Femenino , Genotipo , Infecciones por VIH/epidemiología , VIH-1/clasificación , VIH-1/aislamiento & purificación , Humanos , Masculino , Persona de Mediana Edad , Epidemiología Molecular , Mutación/genética , Filogenia , Prevalencia , ARN Viral , Análisis de Secuencia de ADN , Adulto Joven , Productos del Gen pol del Virus de la Inmunodeficiencia Humana/clasificación
18.
J Infect Dis ; 211(4): 563-70, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25156563

RESUMEN

BACKGROUND: Norovirus (NoV) is the predominant cause of foodborne disease outbreaks. Virus contamination may occur during all steps of food processing, from production to preparation and serving. The relative importance of these different routes of contamination is unknown. METHODS: The purpose of this study was to estimate the proportions of outbreaks caused by asymptomatic and symptomatic food handlers (FHs). Reports of foodborne NoV and sapovirus outbreaks (n=191) that occurred over a 7-year period were extracted, reviewed, and categorized according to the available evidence for source of contamination. RESULTS: In 64 (34%) of the outbreaks, contamination from FHs took place during preparation or serving of food. In the majority of these outbreaks (n=41; 64%), the FHs were asymptomatic during food handling. Some had been in contact with ill household members before handling the food and remained asymptomatic; others developed symptoms shortly after or were post-symptomatic. In 51 (27%) of the outbreaks, contamination occurred during production of the food, and in 55 (29%) of the outbreaks, contamination had supposedly occurred after serving a guest at a self-serve buffet. CONCLUSIONS: Guidelines regarding exclusion of FHs where household members suffer from gastroenteritis could limit the number of outbreaks.


Asunto(s)
Infecciones por Caliciviridae/epidemiología , Portador Sano/epidemiología , Brotes de Enfermedades/estadística & datos numéricos , Manipulación de Alimentos/estadística & datos numéricos , Enfermedades Transmitidas por los Alimentos/epidemiología , Enfermedades Transmitidas por los Alimentos/virología , Infecciones por Caliciviridae/virología , Portador Sano/virología , Dinamarca/epidemiología , Microbiología de Alimentos , Humanos , Norovirus , Estudios Retrospectivos
19.
Mol Cell Proteomics ; 12(2): 426-48, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23197789

RESUMEN

Malaria parasites actively remodel the infected red blood cell (irbc) by exporting proteins into the host cell cytoplasm. The human parasite Plasmodium falciparum exports particularly large numbers of proteins, including proteins that establish a vesicular network allowing the trafficking of proteins onto the surface of irbcs that are responsible for tissue sequestration. Like P. falciparum, the rodent parasite P. berghei ANKA sequesters via irbc interactions with the host receptor CD36. We have applied proteomic, genomic, and reverse-genetic approaches to identify P. berghei proteins potentially involved in the transport of proteins to the irbc surface. A comparative proteomics analysis of P. berghei non-sequestering and sequestering parasites was used to determine changes in the irbc membrane associated with sequestration. Subsequent tagging experiments identified 13 proteins (Plasmodium export element (PEXEL)-positive as well as PEXEL-negative) that are exported into the irbc cytoplasm and have distinct localization patterns: a dispersed and/or patchy distribution, a punctate vesicle-like pattern in the cytoplasm, or a distinct location at the irbc membrane. Members of the PEXEL-negative BIR and PEXEL-positive Pb-fam-3 show a dispersed localization in the irbc cytoplasm, but not at the irbc surface. Two of the identified exported proteins are transported to the irbc membrane and were named erythrocyte membrane associated proteins. EMAP1 is a member of the PEXEL-negative Pb-fam-1 family, and EMAP2 is a PEXEL-positive protein encoded by a single copy gene; neither protein plays a direct role in sequestration. Our observations clearly indicate that P. berghei traffics a diverse range of proteins to different cellular locations via mechanisms that are analogous to those employed by P. falciparum. This information can be exploited to generate transgenic humanized rodent P. berghei parasites expressing chimeric P. berghei/P. falciparum proteins on the surface of rodent irbc, thereby opening new avenues for in vivo screening adjunct therapies that block sequestration.


Asunto(s)
Malaria/metabolismo , Plasmodium berghei/genética , Proteoma/genética , Proteínas Protozoarias/genética , Esquizontes/metabolismo , Trofozoítos/metabolismo , Animales , Antígenos CD36/química , Antígenos CD36/metabolismo , Eritrocitos/metabolismo , Eritrocitos/parasitología , Femenino , Genes Reporteros , Proteínas Fluorescentes Verdes , Interacciones Huésped-Parásitos , Luciferasas , Malaria/parasitología , Ratones , Mutación , Plasmodium berghei/química , Plasmodium berghei/metabolismo , Transporte de Proteínas , Proteoma/química , Proteoma/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Esquizontes/química , Espectrometría de Masas en Tándem , Transfección , Trofozoítos/química
20.
Euro Surveill ; 20(39)2015.
Artículo en Inglés | MEDLINE | ID: mdl-26537105

RESUMEN

Despite the introduction of safe, effective vaccines decades ago and joint global public health efforts to eliminate measles, this vaccine-preventable disease continues to pose threats to children's health worldwide. During 2013 and 2014, measles virus was introduced into Denmark through several independent importations. This resulted in a number of secondary cases (n=7), with two clusters in 2013 and one in 2014. In total, there were 44 cases of measles. Most cases (n=41) were laboratory confirmed by detection of measles virus genome by real-time reverse transcription (RT)-PCR and IgM antibodies. The viruses from confirmed cases were genotyped by sequencing. Only one genotype circulated each year, i.e. D8 and B3, respectively. Sequencing of measles virus from different clinical specimens from the same patients revealed that sequence variants of measles viruses might co-exist and co-transmit during an outbreak. The majority of the cases were unvaccinated (n=27) or recipients of one dose of measles-mumps-rubella (MMR) vaccine (n=7). In addition, two fully vaccinated adult cases were reported in 2014. We demonstrate the transmission of measles virus in a population in which the two-dose MMR vaccination coverage rate was 80% and how even vaccinated individuals may be at risk of contracting measles once transmission has been established.


Asunto(s)
Anticuerpos Antivirales/sangre , Brotes de Enfermedades , Técnicas de Genotipaje/métodos , Virus del Sarampión/genética , Sarampión/epidemiología , Sarampión/virología , Adulto , Niño , Preescolar , Dinamarca/epidemiología , Monitoreo Epidemiológico , Femenino , Genotipo , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Lactante , Recién Nacido , Masculino , Sarampión/prevención & control , Virus del Sarampión/inmunología , Virus del Sarampión/aislamiento & purificación , Vacuna contra el Sarampión-Parotiditis-Rubéola/administración & dosificación , Persona de Mediana Edad , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena en Tiempo Real de la Polimerasa , Vacunación/estadística & datos numéricos , Adulto Joven
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda