Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
Publication year range
1.
Biochim Biophys Acta Proteins Proteom ; 1866(9): 963-972, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29857161

RESUMEN

Protein engineering by directed evolution can alter proteins' structures, properties, and functions. However, membrane proteins, despite their importance to living organisms, remain relatively unexplored as targets for protein engineering and directed evolution. This gap in capabilities likely results from the tendency of membrane proteins to aggregate and fail to overexpress in bacteria cells. For example, the membrane protein caveolin-1 has been implicated in many cell signaling pathways and diseases, yet the full-length protein is too aggregation-prone for detailed mutagenesis, directed evolution, and biophysical characterization. Using a phage-displayed library of full-length caveolin-1 variants, directed evolution with alternating subtractive and functional selections isolated a full-length, soluble variant, termed cavsol, for expression in E. coli. Cavsol folds correctly and binds to its known protein ligands HIV gp41, the catalytic domain of cAMP-dependent protein kinase A, and the polymerase I and transcript release factor. As expected, cavsol does not bind off-target proteins. Cellular studies show that cavsol retains the parent protein's ability to localize at the cellular membrane. Unlike truncated versions of caveolin, cavsol forms large, oligomeric complexes consisting of approximately >50 monomeric units without requiring additional cellular components. Cavsol's secondary structure is a mixture of α-helices and ß-strands. Isothermal titration calorimetry experiments reveal that cavsol binds to gp41 and PKA with low micromolar binding affinity (KD). In addition to the insights into caveolin structure and function, the approach applied here could be generalized to other membrane proteins.


Asunto(s)
Caveolina 1/química , Dominio Catalítico , Caveolina 1/análisis , Caveolina 1/genética , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/química , Evolución Molecular Dirigida , Escherichia coli/genética , Proteína gp41 de Envoltorio del VIH/química , Humanos , Biblioteca de Péptidos , Dominios Proteicos , Ingeniería de Proteínas , Pliegue de Proteína , Proteínas de Unión al ARN/química , Transducción de Señal , Termodinámica
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda