Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Neurosci ; 37(21): 5309-5318, 2017 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-28450545

RESUMEN

Spinal muscular atrophy (SMA) is an autosomal-recessive disorder characterized by severe, often fatal muscle weakness due to loss of motor neurons. SMA patients have deletions and other mutations of the survival of motor neuron 1 (SMN1) gene, resulting in decreased SMN protein. Astrocytes are the primary support cells of the CNS and are responsible for glutamate clearance, metabolic support, response to injury, and regulation of signal transmission. Astrocytes have been implicated in SMA as in in other neurodegenerative disorders. Astrocyte-specific rescue of SMN protein levels has been shown to mitigate disease manifestations in mice. However, the mechanism by which SMN deficiency in astrocytes may contribute to SMA is unclear and what aspect of astrocyte activity is lacking is unknown. Therefore, it is worthwhile to identify defects in SMN-deficient astrocytes that compromise normal function. We show here that SMA astrocyte cultures derived from mouse spinal cord of both sexes are deficient in supporting both WT and SMN-deficient motor neurons derived from male, female, and mixed-sex sources and that this deficiency may be mitigated with secreted factors. In particular, SMN-deficient astrocytes have decreased levels of monocyte chemoactive protein 1 (MCP1) secretion compared with controls and MCP1 restoration stimulates outgrowth of neurites from cultured motor neurons. Correction of MCP1 deficiency may thus be a new therapeutic approach to SMA.SIGNIFICANCE STATEMENT Spinal muscular atrophy (SMA) is caused by the loss of motor neurons, but astrocyte dysfunction also contributes to the disease in mouse models. Monocyte chemoactive protein 1 (MCP1) has been shown to be neuroprotective and is released by astrocytes. Here, we report that MCP1 levels are decreased in SMA mice and that replacement of deficient MCP1 increases differentiation and neurite length of WT and SMN-deficient motor-neuron-like cells in cell culture. This study reveals a novel aspect of astrocyte dysfunction in SMA and indicates a possible approach for improving motor neuron growth and survival in this disease.


Asunto(s)
Astrocitos/metabolismo , Quimiocina CCL2/metabolismo , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Animales , Astrocitos/citología , Células Cultivadas , Quimiocina CCL2/genética , Femenino , Humanos , Masculino , Ratones , Neuronas Motoras/citología , Médula Espinal/citología , Médula Espinal/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo
2.
Neurobiol Dis ; 88: 118-24, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26792401

RESUMEN

The development of therapeutics for neurological disorders is constrained by limited access to the central nervous system (CNS). ATP-binding cassette (ABC) transporters, particularly P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP), are expressed on the luminal surface of capillaries in the CNS and transport drugs out of the endothelium back into the blood against the concentration gradient. Survival motor neuron (SMN) protein, which is deficient in spinal muscular atrophy (SMA), is a target of the ubiquitin proteasome system. Inhibiting the proteasome in a rodent model of SMA with bortezomib increases SMN protein levels in peripheral tissues but not the CNS, because bortezomib has poor CNS penetrance. We sought to determine if we could inhibit SMN degradation in the CNS of SMA mice with a combination of bortezomib and the ABC transporter inhibitor tariquidar. In cultured cells we show that bortezomib is a substrate of P-gp. Mass spectrometry analysis demonstrated that intraperitoneal co-administration of tariquidar increased the CNS penetrance of bortezomib, and reduced proteasome activity in the brain and spinal cord. This correlated with increased SMN protein levels and improved survival and motor function of SMA mice. These findings show that CNS penetrance of treatment for this neurological disorder can be improved by inhibiting drug efflux at the blood-brain barrier.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Antineoplásicos/metabolismo , Bortezomib/metabolismo , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Factores de Edad , Animales , Animales Recién Nacidos , Antineoplásicos/farmacología , Sistema Nervioso Central/citología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Células HEK293 , Humanos , Receptores de Hialuranos/genética , Receptores de Hialuranos/metabolismo , Ratones , Ratones Transgénicos , Neuronas Motoras/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal , Quinolinas/farmacología , Quinolinas/uso terapéutico , Factores de Tiempo , Transfección
3.
J Biol Chem ; 287(49): 41139-51, 2012 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-23060447

RESUMEN

Mutations in the P4-ATPase ATP8B1 cause the inherited liver disease progressive familial intrahepatic cholestasis. Several of these mutations are located in conserved regions of the transmembrane domain associated with substrate binding and transport. Assays for P4-ATPase-mediated transport in living yeast cells were developed and used to characterize the specificity and kinetic parameters of this transport. Progressive familial intrahepatic cholestasis mutations were introduced into the yeast plasma membrane P4-ATPase Dnf2p, and the effect of these mutations on its catalysis of phospholipid transport were determined. The results of these measurements have implications for the basis of the disease and for the mechanism of phospholipid transit through the enzyme during the reaction cycle.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Colestasis Intrahepática/genética , Mutación , Transportadoras de Casetes de Unión a ATP/genética , Secuencia de Aminoácidos , Humanos , Cinética , Datos de Secuencia Molecular , Fenotipo , Fosfolípidos/química , Análisis de Regresión , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
4.
Glia ; 59(11): 1719-31, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21769946

RESUMEN

Dysregulation of glutamate handling ensuing downregulation of expression and activity levels of the astroglial glutamate transporter EAAT2 is implicated in excitotoxic degeneration of motor neurons in amyotrophic lateral sclerosis (ALS). We previously reported that EAAT2 (a.k.a. GLT-1) is cleaved by caspase-3 at its cytosolic carboxy-terminus domain. This cleavage results in impaired glutamate transport activity and generates a proteolytic fragment (CTE) that we found to be post-translationally conjugated by SUMO1. We show here that this sumoylated CTE fragment accumulates in the nucleus of spinal cord astrocytes of the SOD1-G93A mouse model of ALS at symptomatic stages of disease. Astrocytic expression of CTE, artificially tagged with SUMO1 (CTE-SUMO1) to mimic the native sumoylated fragment, recapitulates the nuclear accumulation pattern of the endogenous EAAT2-derived proteolytic fragment. Moreover, in a co-culture binary system, expression of CTE-SUMO1 in spinal cord astrocytes initiates extrinsic toxicity by inducing caspase-3 activation in motor neuron-derived NSC-34 cells or axonal growth impairment in primary motor neurons. Interestingly, prolonged nuclear accumulation of CTE-SUMO1 is intrinsically toxic to spinal cord astrocytes, although this gliotoxic effect of CTE-SUMO1 occurs later than the indirect, noncell autonomous toxic effect on motor neurons. As more evidence on the implication of SUMO substrates in neurodegenerative diseases emerges, our observations strongly suggest that the nuclear accumulation in spinal cord astrocytes of a sumoylated proteolytic fragment of the astroglial glutamate transporter EAAT2 could participate to the pathogenesis of ALS and suggest a novel, unconventional role for EAAT2 in motor neuron degeneration.


Asunto(s)
Transportador 2 de Aminoácidos Excitadores/toxicidad , Neuronas Motoras/efectos de los fármacos , Proteína SUMO-1/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Astrocitos/metabolismo , Axones/fisiología , Axones/ultraestructura , Caspasa 3/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/patología , Células Cultivadas , Técnicas de Cocultivo , Transportador 2 de Aminoácidos Excitadores/química , Técnica del Anticuerpo Fluorescente , Inmunohistoquímica , Ratones , Ratones Transgénicos , Análisis por Micromatrices , Fragmentos de Péptidos/química , Fragmentos de Péptidos/toxicidad , Reacción en Cadena en Tiempo Real de la Polimerasa , Superóxido Dismutasa/genética , Superóxido Dismutasa-1
5.
Exp Neurol ; 292: 145-153, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28342750

RESUMEN

Downregulation in the astroglial glutamate transporter EAAT2 in amyotrophic lateral sclerosis (ALS) patients and mutant SOD1 mouse models of ALS is believed to contribute to the death of motor neurons by excitotoxicity. We previously reported that caspase-3 cleaves EAAT2 at a unique cleavage consensus site located in its c-terminus domain, a proteolytic cleavage that also occurs in vivo in the mutant SOD1 mouse model of ALS and leads to accumulation of a sumoylated EAAT2 C-terminus fragment (CTE-SUMO1) beginning around onset of disease. CTE-SUMO1 accumulates in PML nuclear bodies of astrocytes and causes them to alter their mature phenotypes and secrete factors toxic to motor neurons. Here, we report that mutating the caspase-3 consensus site in the EAAT2 sequence with an aspartate to asparagine mutation (D504N), thereby inhibiting caspase-3 cleavage of EAAT2, confers protection to the SOD1-G93A mouse. EAAT2-D504N knock-in mutant mice were generated and crossed with SOD1-G93A mice to assess the in vivo pathogenic relevance for ALS symptoms of EAAT2 cleavage. The mutation did not affect normal EAAT2 function nor non-ALS mice. In agreement with the timing of CTE-SUMO1 accumulation, while onset of disease was not affected, the mutation caused an extension in progression time, a delay in the development of hindlimb and forelimb muscle weakness, and a significant increase in the lifespan of SOD1-G93A mice.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Caspasa 3/metabolismo , Transportador 2 de Aminoácidos Excitadores/genética , Ácido Glutámico/metabolismo , Mutación/genética , Superóxido Dismutasa/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Astrocitos/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Ácido Glutámico/genética , Cuerpos de Inclusión Intranucleares/metabolismo , Ratones , Neuronas Motoras/metabolismo , Neuronas Motoras/patología
6.
Neuromolecular Med ; 15(4): 760-70, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24062161

RESUMEN

Emerging lines of evidence suggest a relationship between amyotrophic lateral sclerosis (ALS) and protein sumoylation. Multiple studies have demonstrated that several of the proteins involved in the pathogenesis of ALS, including superoxide dismutase 1, fused in liposarcoma, and TAR DNA-binding protein 43 (TDP-43), are substrates for sumoylation. Additionally, recent studies in cellular and animal models of ALS revealed that sumoylation of these proteins impact their localization, longevity, and how they functionally perform in disease, providing novel areas for mechanistic investigations and therapeutics. In this article, we summarize the current literature examining the impact of sumoylation of critical proteins involved in ALS and discuss the potential impact for the pathogenesis of the disease. In addition, we report and discuss the implications of new evidence demonstrating that sumoylation of a fragment derived from the proteolytic cleavage of the astroglial glutamate transporter, EAAT2, plays a direct role in downregulating the expression levels of full-length EAAT2 by binding to a regulatory region of its promoter.


Asunto(s)
Esclerosis Amiotrófica Lateral/etiología , Proteínas del Tejido Nervioso/fisiología , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/fisiología , Sumoilación/fisiología , Secuencia de Aminoácidos , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Astrocitos/metabolismo , Señalización del Calcio , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Transportador 2 de Aminoácidos Excitadores , Proteínas de Transporte de Glutamato en la Membrana Plasmática/metabolismo , Ácido Glutámico/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Neuronas Motoras/metabolismo , Trastornos Musculares Atróficos/metabolismo , Conformación Proteica , Proteína FUS de Unión a ARN/metabolismo , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1
7.
Antioxid Redox Signal ; 11(7): 1587-602, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19413484

RESUMEN

Responsible for the majority of excitatory activity in the central nervous system (CNS), glutamate interacts with a range of specific receptor and transporter systems to establish a functional synapse. Excessive stimulation of glutamate receptors causes excitotoxicity, a phenomenon implicated in both acute and chronic neurodegenerative diseases [e.g., ischemia, Huntington's disease, and amyotrophic lateral sclerosis (ALS)]. In physiology, excitotoxicity is prevented by rapid binding and clearance of synaptic released glutamate by high-affinity, Na(+)-dependent glutamate transporters and amplified by defects to the glutamate transporter and receptor systems. ALS pathogenetic mechanisms are not completely understood and characterized, but excitotoxicity has been regarded as one firm mechanism implicated in the disease because of data obtained from ALS patients and animal and cellular models as well as inferred by the documented efficacy of riluzole, a generic antiglutamatergic drug, has in patients. In this article, we critically review the several lines of evidence supporting a role for glutamate-mediated excitotoxicity in the death of motor neurons occurring in ALS, putting a particular emphasis on the impairment of the glutamate-transport system.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/fisiología , Esclerosis Amiotrófica Lateral/fisiopatología , Neuronas Motoras , Animales , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda