RESUMEN
Digital polymerase chain reaction (dPCR) is increasingly being adopted by reference material producers and metrology institutes for value assignment, and for homogeneity and stability studies of nucleic acid reference materials. A reference method procedure should fulfill several requirements, and the uncertainty and biases should be completely understood. A bias in target concentration when inaccurate droplet volume is used in the droplet dPCR measurement equation has previously been documented. In this study, we characterize both intrawell and interwell droplet volume variability using optical microscopy and determine the impact of these two sources of variability on target concentration estimates. A small optical distortion across the image was measured which, without correction, biased droplet volume measurements. Longitudinal monitoring of interwell droplet volume over 39 weeks using several lots of Mastermix demonstrated a mean droplet volume of 0.786 nL and intermediate precision of 1.7%. The frequency distribution of intrawell droplet volumes varied. Some wells displayed a skewed distribution which resulted in a small bias in estimated target concentration for a simulated dPCR with target concentrations of between 62 and 8000 copies µL-1. The size and direction of this bias was influenced by the distribution pattern of the droplet volumes within the well. The proportion of Mastermix in dPCR mix affected droplet volume. A pipetting error of 10% during mixing of the premix and Mastermix resulted in a 2.6% change in droplet volume and, consequently, a bias in concentration measurements highlighting the advantages of gravimetric preparation of dPCR mixes for high accuracy measurements.
Asunto(s)
Variaciones en el Número de Copia de ADN , Ácidos Nucleicos/análisis , Reacción en Cadena de la Polimerasa/métodos , HumanosRESUMEN
Enumeration-based determination of DNA copy-concentration was assessed through an international comparison among national metrology institutes (NMIs) and designated institutes (DIs). Enumeration-based quantification does not require a calibration standard thereby providing a route to "absolute quantification", which offers the potential for reliable value assignments of DNA reference materials, and International System of Units (SI) traceability to copy number 1 through accurate counting. In this study, 2 enumeration-based methods, flow cytometric (FCM) counting and the digital polymerase chain reaction (dPCR), were compared to quantify a solution of the pBR322 plasmid at a concentration of several thousand copies per microliter. In addition, 2 orthogonal chemical-analysis methods based on nucleotide quantification, isotope-dilution mass spectrometry (IDMS) and capillary electrophoresis (CE) were applied to quantify a more concentrated solution of the plasmid. Although 9 dPCR results from 8 laboratories showed some dispersion (relative standard deviation [RSD] = 11.8%), their means were closely aligned with those of the FCM-based counting method and the orthogonal chemical-analysis methods, corrected for gravimetric dilution factors. Using the means of dPCR results, the RSD of all 4 methods was 1.8%, which strongly supported the validity of the recent enumeration approaches. Despite a good overall agreement, the individual dPCR results were not sufficiently covered by the reported measurement uncertainties. These findings suggest that some laboratories may not have considered all factors contributing to the measurement uncertainty of dPCR, and further investigation of this possibility is warranted.
Asunto(s)
ADN/análisis , Citometría de Flujo/métodos , Plásmidos/análisis , Reacción en Cadena de la Polimerasa/métodos , Electroforesis Capilar , Espectrometría de Masas , Nucleótidos/análisisRESUMEN
Hypermethylation at promoter regions of tumour suppressor genes is diagnostic for many cancers. Many genomic regions that may be the targets for clinical diagnostic assays have been identified through use of measuring systems reliant on bisulphite conversion, but few of these promising markers are in clinical use. The comparability of a widely used DNA methylation measuring system involving bisulphite conversion was evaluated by supplying three experienced centres with methylated DNA reference material mixtures that were independently prepared and characterised by mass spectrometry and high-pressure liquid chromatography. A replication scheme was designed to evaluate reproducibility of key analytical steps within and between laboratories by regression analysis. In general, methylation was underestimated and methylation ratio values were highly variable. The difference in methylation ratio between CpG sites was the key contributor to variable results. The CpG site effect followed a similar pattern at all centres and at all methylation levels examined indicating that sequence context had a major effect on methylation ratio measurement using the bisulphite conversion process. The magnitude of underestimation combined with the variability of measurements between CpG sites compromises the concept of measuring genomic regional methylation by averaging the methylation ratios of many CpG sites. There were no significant differences in replicate bisulphite conversions or sample work-up and instrument analysis at each centre thus making this technique suitable for comparative intralaboratory investigations. However, it may not be suitable for a routine diagnostic assay without extensive standardisation efforts.
Asunto(s)
Metilación de ADN , ADN/genética , Genes p16 , Neoplasias/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Secuencia de Bases , Cromatografía Líquida de Alta Presión/métodos , Islas de CpG , ADN/análisis , Humanos , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN/métodos , Sulfitos/químicaRESUMEN
Digital polymerase chain reaction (dPCR) is potentially a primary method for quantifying target DNA regions in a background of nontarget material and is independent of external calibrators. Accurate dPCR measurements require single-molecule detection by conventional PCR assays that may be subject to bias due to inhibition, interference, or sequence-derived PCR inefficiency. Elimination or control of such biases is essential for validation of PCR assays, but this may require a substantial investment in resources. Here we present a mechanism for DNA quantification that does not require PCR assay validation in situations where target DNA quantity is high enough to be measured by physical techniques such as quantitative high-performance liquid chromatography (HPLC) or electrophoresis. A commercially available DNA marker derived from pUC19 was quantified by dPCR and was then used to calibrate an HPLC measuring system for quantifying a DNA amplicon that had a high content of guanidine and cytidine. The dPCR-calibrated HPLC measurement was verified by independent measurement using isotope dilution mass spectrometry (IDMS). HPLC quantification, calibrated with dPCR or IDMS measured DNA markers, provides an effective method for certifying the quantity of genetic reference materials that may be difficult to analyze by PCR. These secondary reference materials may then be used to validate and calibrate quantitative PCR measurements and thus could expand the breadth of applications for which traceability to the International System of Units is possible.