Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Proc Natl Acad Sci U S A ; 117(8): 3989-3995, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32047035

RESUMEN

Natural gas is a key energy resource, and understanding how it forms is important for predicting where it forms in economically important volumes. However, the origin of dry thermogenic natural gas is one of the most controversial topics in petroleum geochemistry, with several differing hypotheses proposed, including kinetic processes (such as thermal cleavage, phase partitioning during migration, and demethylation of aromatic rings) and equilibrium processes (such as transition metal catalysis). The dominant paradigm is that it is a product of kinetically controlled cracking of long-chain hydrocarbons. Here we show that C2+n-alkane gases (ethane, propane, butane, and pentane) are initially produced by irreversible cracking chemistry, but, as thermal maturity increases, the isotopic distribution of these species approaches thermodynamic equilibrium, either at the conditions of gas formation or during reservoir storage, becoming indistinguishable from equilibrium in the most thermally mature gases. We also find that the pair of CO2 and C1 (methane) exhibit a separate pattern of mutual isotopic equilibrium (generally at reservoir conditions), suggesting that they form a second, quasi-equilibrated population, separate from the C2 to C5 compounds. This conclusion implies that new approaches should be taken to predicting the compositions of natural gases as functions of time, temperature, and source substrate. Additionally, an isotopically equilibrated state can serve as a reference frame for recognizing many secondary processes that may modify natural gases after their formation, such as biodegradation.

2.
Anal Chem ; 91(23): 14967-14974, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31663335

RESUMEN

We present precise measurements of doubly deuterated methane (12CH2D2) in natural methane samples using tunable infrared laser direct absorption spectroscopy (TILDAS). Using a 413 m optical path length astigmatic Herriott cell and two quantum cascade lasers (QCLs) scanning the spectral regions of 1090.46 ± 0.1 and 1200.23 ± 0.1 cm-1, the instrument simultaneously measures the five main isotopologues of methane. The ratios 13CH3D/12CH4 and 12CH2D2/12CH4 are measured at 0.01‰ and 0.5‰ (1σ) instrumental precision, respectively. The instrumental accuracy was assessed by measuring a series of methane gases with a range of δ13C and δD values but with the abundances of all isotopologues driven to thermal equilibrium at 250 °C. The estimated accuracy of Δ12CH2D2 is 1‰ (1σ) on the basis of the results of the heated methane samples. This new TILDAS instrument provides a simple and rapid technique to explore the sources of methane in the environment.

3.
J Basic Microbiol ; 49 Suppl 1: S87-92, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19322839

RESUMEN

Molecular investigations of the sulfate reducing bacteria that target the dissimilatory sulfite-reductase subunit A gene (dsr A) are plagued by the nonspecific performance of conventional PCR primers. Here we describe the incorporation of the FailSafe PCR System to optimize environmental analysis of dsr A by PCR amplification and denaturing gradient gel electrophoresis. PCR-DGGE analysis of dsr A composition revealed that SRB diversity was greater and more variable throughout the vertical profile of a marine sediment core obtained from a gas hydrate site (GC234) in the Gulf of Mexico than in a sediment core collected from a nearby site devoid of gas hydrates (NBP). Depth profiled dsr B abundance corresponded with sulfate reduction rates at both sites, though measurements were higher at GC234. This study exemplifies the numerical and functional importance of sulfate reducing bacteria in deep-sea sedimentary environments, and incremental methodological advancements, as described herein, will continue to streamline the analysis of sulfate reducer communities in situ.


Asunto(s)
Proteínas Bacterianas/genética , Sedimentos Geológicos/microbiología , Hidrogenosulfito Reductasa/genética , Sulfatos/metabolismo , Bacterias Reductoras del Azufre/genética , ADN Bacteriano/genética , Electroforesis en Gel de Poliacrilamida/métodos , Reacción en Cadena de la Polimerasa/métodos , Análisis de Secuencia de ADN , Bacterias Reductoras del Azufre/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda