Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
PLoS Pathog ; 13(10): e1006666, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28968463

RESUMEN

The RNA genomes of picornaviruses are translated into single polyproteins which are subsequently cleaved into structural and non-structural protein products. For genetic economy, proteins and processing intermediates have evolved to perform distinct functions. The picornavirus precursor protein, P3, is cleaved to produce membrane-associated 3A, primer peptide 3B, protease 3Cpro and polymerase 3Dpol. Uniquely, foot-and-mouth disease virus (FMDV) encodes three similar copies of 3B (3B1-3), thus providing a convenient natural system to explore the role(s) of 3B in the processing cascade. Using a replicon system, we confirmed by genetic deletion or functional inactivation that each copy of 3B appears to function independently to prime FMDV RNA replication. However, we also show that deletion of 3B3 prevents replication and that this could be reversed by introducing mutations at the C-terminus of 3B2 that restored the natural sequence at the 3B3-3C cleavage site. In vitro translation studies showed that precursors with 3B3 deleted were rapidly cleaved to produce 3CD but that no polymerase, 3Dpol, was detected. Complementation assays, using distinguishable replicons bearing different inactivating mutations, showed that replicons with mutations within 3Dpol could be recovered by 3Dpol derived from "helper" replicons (incorporating inactivation mutations in all three copies of 3B). However, complementation was not observed when the natural 3B-3C cleavage site was altered in the "helper" replicon, again suggesting that a processing abnormality at this position prevented the production of 3Dpol. When mutations affecting polyprotein processing were introduced into an infectious clone, viable viruses were recovered but these had acquired compensatory mutations in the 3B-3C cleavage site. These mutations were shown to restore the wild-type processing characteristics when analysed in an in vitro processing assay. Overall, this study demonstrates a dual functional role of the small primer peptide 3B3, further highlighting how picornaviruses increase genetic economy.


Asunto(s)
Virus de la Fiebre Aftosa/genética , ARN Viral/genética , Proteínas Virales/metabolismo , Replicación Viral , Animales , Replicación del ADN/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación/genética , ARN Viral/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Replicación Viral/genética
2.
J Gen Virol ; 95(Pt 12): 2649-2657, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25096816

RESUMEN

We have previously documented the inhibitory activity of RNA aptamers to the RNA-dependent RNA polymerase of foot-and-mouth disease virus (3D(pol)). Here we report their modification and use with a subgenomic replicon incorporating GFP (pGFP-PAC replicon), allowing replication to be monitored and quantified in real-time. GFP expression in transfected BHK-21 cells reached a maximum at approximately 8 h post-transfection, at which time change in morphology of the cells was consistent with a virus-induced cytopathic effect. However, transfection of replicon-bearing cells with a 3D(pol) aptamer RNA resulted in inhibition of GFP expression and maintenance of normal cell morphology, whereas a control aptamer RNA had little effect. The inhibition was correlated with a reduction in 3D(pol) (detected by immunoblotting) and shown to be dose dependent. The 3D(pol) aptamers appeared to be more effective than 2'-C-methylcytidine (2'CMC). Aptamers to components of the replication complex are therefore useful molecular tools for studying viral replication and also have potential as diagnostic molecules in the future.


Asunto(s)
Aptámeros de Nucleótidos , Virus de la Fiebre Aftosa/fisiología , Animales , Línea Celular , Cricetinae , Virus de la Fiebre Aftosa/genética , Regulación Viral de la Expresión Génica/fisiología , Ingeniería Genética , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes/genética , Mutagénesis , ARN Viral/genética , ARN Viral/metabolismo , Replicón
3.
J Virol ; 86(4): 2371-4, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22156531

RESUMEN

The replication of many viruses involves the formation of higher-order structures or replication "factories." We show that the key replication enzyme of foot-and-mouth disease virus (FMDV), the RNA-dependent RNA polymerase, forms fibrils in vitro. Although there are similarities with previously characterized poliovirus polymerase fibrils, FMDV fibrils are narrower, are composed of both protein and RNA, and, importantly, are seen only when all components of an elongation assay are present. Furthermore, an inhibitory RNA aptamer prevents fibril formation.


Asunto(s)
Replicación del ADN , Virus de la Fiebre Aftosa/enzimología , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Virales/química , Línea Celular , Virus de la Fiebre Aftosa/química , Virus de la Fiebre Aftosa/genética , Virus de la Fiebre Aftosa/fisiología , ARN Viral/genética , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral
4.
PLoS One ; 8(5): e64781, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23738000

RESUMEN

BACKGROUND: Human papillomavirus 16 (HPV16) is a high-risk DNA tumour virus, which is a major causative agent of cervical cancer. Cellular transformation is associated with deregulated expression of the E6 and E7 oncogenes. E7 has been shown to bind a number of cellular proteins, including the cell cycle control protein pRb. In this study, RNA aptamers (small, single-stranded oligonucleotides selected for high-affinity binding) to HPV16 E7 were employed as molecular tools to further investigate these protein-protein interactions. METHODOLOGY/PRINCIPAL FINDINGS: This study is focused on one aptamer (termed A2). Transfection of this molecule into HPV16-transformed cells resulted in inhibition of cell proliferation (shown using real-time cell electronic sensing and MTT assays) due to the induction of apoptosis (as demonstrated by Annexin V/propidium iodide staining). GST-pull down and bead binding assays were used to demonstrate that the binding of A2 required N-terminal residues of E7 known to be involved in interaction with the cell cycle control protein, pRb. Using a similar approach, A2 was shown to disrupt the interaction between E7 and pRb in vitro. Furthermore, transfection of HPV16-transformed cells with A2 appeared to result in the loss of E7 and rise in pRb levels, as observed by immunoblotting. CONCLUSIONS/SIGNIFICANCE: This paper includes the first characterisation of the effects of an E7 RNA aptamer in a cell line derived from a cervical carcinoma. Transfection of cells with A2 was correlated with the loss of E7 and the induction of apoptosis. Aptamers specific for a number of cellular and viral proteins have been documented previously; one aptamer (Macugen) is approved for clinical use and several others are in clinical trials. In addition to its role as a molecular tool, A2 could have further applications in the future.


Asunto(s)
Apoptosis , Aptámeros de Nucleótidos/metabolismo , Proteínas E7 de Papillomavirus/metabolismo , Aptámeros de Nucleótidos/genética , Secuencia de Bases , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Viral , Humanos , Proteína de Retinoblastoma/metabolismo , Transfección
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda