Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Nat Rev Neurosci ; 21(7): 394, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32514108

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Nat Rev Neurosci ; 21(7): 384-393, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32488205

RESUMEN

Context-dependent biological variation presents a unique challenge to the reproducibility of results in experimental animal research, because organisms' responses to experimental treatments can vary with both genotype and environmental conditions. In March 2019, experts in animal biology, experimental design and statistics convened in Blonay, Switzerland, to discuss strategies addressing this challenge. In contrast to the current gold standard of rigorous standardization in experimental animal research, we recommend the use of systematic heterogenization of study samples and conditions by actively incorporating biological variation into study design through diversifying study samples and conditions. Here we provide the scientific rationale for this approach in the hope that researchers, regulators, funders and editors can embrace this paradigm shift. We also present a road map towards better practices in view of improving the reproducibility of animal research.


Asunto(s)
Experimentación Animal/normas , Variación Biológica Poblacional , Proyectos de Investigación/normas , Animales , Reproducibilidad de los Resultados
3.
Mol Ecol ; 33(5): e17272, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38240162

RESUMEN

Colour polymorphisms have long served as model systems in evolutionary studies and continue to inform about processes involved in the origin and dynamics of biodiversity. Modern sequencing tools allow for evaluating whether phenotypic differences between morphs reflect genetic differentiation rather than developmental plasticity, and for investigating whether polymorphisms represent intermediate stages of diversification towards speciation. We investigated phenotypic and genetic differentiation between two colour morphs of the butterfly Fabriciana adippe using a combination of ddRAD-sequencing and comparisons of body size, colour patterns and optical properties of bright wing spots. The silvery-spotted adippe form had larger and darker wings and reflected UV light, while the yellow cleodoxa form displayed more green scales and reflected very little UV, showcasing that they constitute distinct and alternative integrated phenotypes. Genomic analyses revealed genetic structuring according to source population, and to colour morph, suggesting that the phenotypic differentiation reflects evolutionary modifications. We report 17 outlier loci associated with colour morph, including ultraviolet-sensitive visual pigment (UVRh1), which is associated with intraspecific communication and mate choice in butterflies. Together with the demonstration that the wings of the adippe (but essentially not the cleodoxa) morph reflect UV light, that UV reflectance is higher in females than males and that morphs differ in wing size, this suggests that these colour morphs might represent genetically integrated phenotypes, possibly adapted to different microhabitats. We propose that non-random mating might contribute to the differentiation and maintenance of the polymorphism.


Asunto(s)
Mariposas Diurnas , Animales , Masculino , Femenino , Mariposas Diurnas/genética , Color , Rayos Ultravioleta , Polimorfismo Genético , Estructuras Genéticas , Pigmentación/genética
4.
Mol Ecol ; : e17496, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39161196

RESUMEN

Skin microbiomes provide vital functions, yet knowledge about the drivers and processes structuring their species assemblages is limited-especially for non-model organisms. In this study, fish skin microbiome was assessed by high throughput sequencing of amplicon sequence variants from metabarcoding of V3-V4 regions in the 16S rRNA gene on fish hosts subjected to the following experimental manipulations: (i) translocation between fresh and brackish water habitats to investigate the role of environment; (ii) treatment with an antibacterial disinfectant to reboot the microbiome and investigate community assembly and priority effects; and (iii) maintained alone or in pairs to study the role of social environment and inter-host dispersal of microbes. The results revealed that fish skin microbiomes harbour a highly dynamic microbial composition that was distinct from bacterioplankton communities in the ambient water. Microbiome composition first diverged as an effect of translocation to either the brackish or freshwater habitat. When the freshwater individuals were translocated back to brackish water, their microbiome composition converged towards the fish microbiomes in the brackish habitat. In summary, external environmental conditions and individual-specific factors jointly determined the community composition dynamics, whereas inter-host dispersal had negligible effects. The dynamics of the microbiome composition was seemingly non-affected by reboot treatment, pointing towards high resilience to disturbance. The results emphasised the role of inter-individual variability for the unexplained variation found in many host-microbiome systems, although the mechanistic underpinnings remain to be identified.

5.
Proc Biol Sci ; 290(2013): 20231608, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38113936

RESUMEN

Variation in the composition of skin-associated microbiomes has been attributed to host species, geographical location and habitat, but the role of intraspecific phenotypic variation among host individuals remains elusive. We explored if and how host environment and different phenotypic traits were associated with microbiome composition. We conducted repeated sampling of dorsal and ventral skin microbiomes of carp individuals (Cyprinus carpio) before and after translocation from laboratory conditions to a semi-natural environment. Both alpha and beta diversity of skin-associated microbiomes increased substantially within and among individuals following translocation, particularly on dorsal body sites. The variation in microbiome composition among hosts was significantly associated with body site, sun-basking, habitat switch and growth, but not temperature gain while basking, sex, personality nor colour morph. We suggest that the overall increase in the alpha and beta diversity estimates among hosts were induced by individuals expressing greater variation in behaviours and thus exposure to potential colonizers in the pond environment compared with the laboratory. Our results exemplify how biological diversity at one level of organization (phenotypic variation among and within fish host individuals) together with the external environment impacts biological diversity at a higher hierarchical level of organization (richness and composition of fish-associated microbial communities).


Asunto(s)
Carpas , Microbiota , Animales , Biodiversidad , Piel , ARN Ribosómico 16S
6.
Mol Ecol ; 31(4): 1093-1110, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34874594

RESUMEN

Understanding how eco-evolutionary processes and environmental factors drive population differentiation and adaptation are key challenges in evolutionary biology of relevance for biodiversity protection. Differentiation requires at least partial reproductive separation, which may result from different modes of isolation such as geographic isolation (allopatry) or isolation by distance (IBD), resistance (IBR), and environment (IBE). Despite that multiple modes might jointly influence differentiation, studies that compare the relative contributions are scarce. Using RADseq, we analyse neutral and adaptive genetic diversity and structure in 11 pike (Esox lucius) populations from contrasting environments along a latitudinal gradient (54.9-63.6°N), to investigate the relative effects of IBD, IBE and IBR, and to assess whether the effects differ between neutral and adaptive variation, or across structural levels. Patterns of neutral and adaptive variation differed, probably reflecting that they have been differently affected by stochastic and deterministic processes. The importance of the different modes of isolation differed between neutral and adaptive diversity, yet were consistent across structural levels. Neutral variation was influenced by interactions among all three modes of isolation, with IBR (seascape features) playing a central role, wheares adaptive variation was mainly influenced by IBE (environmental conditions). Taken together, this and previous studies suggest that it is common that multiple modes of isolation interactively shape patterns of genetic variation, and that their relative contributions differ among systems. To enable identification of general patterns and understand how various factors influence the relative contributions, it is important that several modes are simultaneously investigated in additional populations, species and environmental settings.


Asunto(s)
Esocidae , Variación Genética , Adaptación Fisiológica , Animales , Biodiversidad , Evolución Biológica , Esocidae/genética , Variación Genética/genética , Genética de Población
7.
Mol Ecol ; 31(16): 4381-4401, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35841126

RESUMEN

Understanding which factors and processes are associated with genetic differentiation within and among species remains a major goal in evolutionary biology. To explore differences and similarities in genetic structure and its association with geographical and climatic factors in sympatric sister species, we conducted a large-scale (>32° latitude and >36° longitude) comparative phylogeographical study on three Argynnini butterfly species (Speyeria aglaja, Fabriciana adippe and F. niobe) that have similar life histories, but differ in ecological generalism and dispersal abilities. Analyses of nuclear (ddRAD-sequencing derived SNP markers) and mitochondrial (COI sequences) data revealed differences between species in genetic structure and how genetic differentiation was associated with climatic factors (temperature, solar radiation, precipitation, wind speed). Geographical proximity accounted for much of the variation in nuclear and mitochondrial structure and evolutionary relationships in F. adippe and F. niobe, but only explained the pattern observed in the nuclear data in S. aglaja, for which mitonuclear discordance was documented. In all species, Iberian and Balkan individuals formed genetic clusters, suggesting isolation in glacial refugia and limited postglacial expansion. Solar radiation and precipitation were associated with the genetic structure on a regional scale in all species, but the specific combinations of environmental and geographical factors linked to variation within species were unique, pointing to species-specific responses to common environments. Our findings show that the species share similar colonization histories, and that the same ecological factors, such as niche breadth and dispersal capacity, covary with genetic differentiation within these species to some extent, thereby highlighting the importance of comparative phylogeographical studies in sympatric sister species.


Asunto(s)
Mariposas Diurnas , Genotipo , Filogeografía , Animales , Mariposas Diurnas/genética , Ambiente , Variación Genética/genética , Filogenia
8.
Proc Biol Sci ; 288(1961): 20211255, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34666525

RESUMEN

Ecological theory postulates that the size and isolation of habitat patches impact the colonization/extinction dynamics that determine community species richness and population persistence. Given the key role of lotic habitats for life-history completion in rheophilic fish, evaluating how the distribution of swift-flowing habitats affects the abundance and dynamics of subpopulations is essential. Using extensive electrofishing data, we show that merging island biogeography with meta-population theory, where lotic habitats are considered as islands in a lentic matrix, can explain spatio-temporal variation in occurrence and density of brown trout (Salmo trutta). Subpopulations in larger and less isolated lotic habitat patches had higher average densities and smaller between-year density fluctuations. Larger lotic habitat patches also had a lower predicted risk of excessive zero-catches, indicative of lower extinction risk. Trout density further increased with distance from the edge of adjacent lentic habitats with predator (Esox lucius) presence, suggesting that edge- and matrix-related mortality contributes to the observed patterns. These results can inform the prioritization of sites for habitat restoration, dam removal and reintroduction by highlighting the role of suitable habitat size and connectivity in population abundance and stability for riverine fish populations.


Asunto(s)
Ríos , Trucha , Animales , Ecosistema , Dinámica Poblacional
9.
J Anim Ecol ; 90(10): 2236-2347, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34028836

RESUMEN

Life history theory posits that organisms should time their reproduction to coincide with environmental conditions that maximize their fitness. Population-level comparisons have contributed important insights on the adaptive value of reproductive timing and its association to environmental variation. Yet, despite its central role to ecology and evolution, the causes and consequences of variation in reproductive timing among individuals within populations are poorly understood in vertebrates other than birds. Using a combination of observational field studies and a split-brood experiment, we investigated whether differences in breeding time were associated with changes in hatching success, reproductive allocation and reaction norms linking offspring performance to temperature within an anadromous Baltic Sea population of perch Perca fluviatilis. Field observations revealed substantial variation in reproductive timing, with the breeding period lasting almost 2 months and occurring in temperatures ranging from 10 to 21℃. The hatching success of perch decreased as the reproductive season progressed. At the same time, the reproductive allocation strategy changed over the season, late breeders (the offspring of which were introduced into a high resource environment and increased predation pressure) produced more and smaller eggs that resulted in smaller larvae, compared with early breeders. The split-brood experiment in which eggs were incubated in different temperatures (10, 12, 15, 18°C) showed that differences in reproductive timing were associated with a change in the shape of the reaction norm linking offspring performance to water temperature indicative of adaptive phenotypic plasticity, with the offspring of early breeders performing best in low temperatures and the offspring of late breeders performing best in high temperatures. The seasonal changes in reproductive traits and the shape of the thermal performance suggest time-dependent adaptive differences among individuals within the population. Management actions aimed at preserving and restoring variation in the timing of reproductive events will thus likely also influence variation in associated life history traits and thermal performance curves, which could safeguard populations against environmental challenges and changes associated with exploitation and global warming.


Asunto(s)
Rasgos de la Historia de Vida , Percas , Animales , Reproducción , Estaciones del Año , Temperatura
10.
Proc Biol Sci ; 287(1928): 20193014, 2020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32517620

RESUMEN

Biodiversity is challenged worldwide by exploitation, global warming, changes in land use and increasing urbanization. It is hypothesized that communities in urban areas should consist primarily of generalist species with broad niches that are able to cope with novel, variable, fragmented, warmer and unpredictable environments shaped by human pressures. We surveyed moth communities in three cities in northern Europe and compared them with neighbouring moth assemblages constituting species pools of potential colonizers. We found that urban moth communities consisted of multi-dimensional generalist species that had larger distribution ranges, more variable colour patterns, longer reproductive seasons, broader diets, were more likely to overwinter as an egg, more thermophilic, and occupied more habitat types compared with moth communities in surrounding areas. When body size was analysed separately, results indicated that city occupancy was associated with larger size, but this effect disappeared when body size was analysed together with the other traits. Our findings indicate that urbanization imposes a spatial filtering process in favour of thermophilic species characterized by high intraspecific diversity and multi-dimensional generalist lifestyles over specialized species with narrow niches.


Asunto(s)
Ecosistema , Mariposas Nocturnas/fisiología , Animales , Biodiversidad , Tamaño Corporal , Ciudades , Humanos , Estaciones del Año , Especificidad de la Especie , Urbanización
12.
BMC Evol Biol ; 19(1): 148, 2019 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-31331267

RESUMEN

BACKGROUND: In the wake of climate change many environments will be exposed to increased and more variable temperatures. Knowledge about how species and populations respond to altered temperature regimes is therefore important to improve projections of how ecosystems will be affected by global warming, and to aid management. We conducted a common garden, split-brood temperature gradient (4.5 °C, 9.7 °C and 12.3 °C) experiment to study the effects of temperature in two populations (10 families from each population) of anadromous pike (Esox lucius) that normally experience different temperatures during spawning. Four offspring performance measures (hatching success, day degrees until hatching, fry survival, and fry body length) were compared between populations and among families. RESULTS: Temperature affected all performance measures in a population-specific manner. Low temperature had a positive effect on the Harfjärden population and a negative effect on the Lervik population. Further, the effects of temperature differed among families within populations. CONCLUSIONS: The population-specific responses to temperature indicate genetic differentiation in developmental plasticity between populations, and may reflect an adaptation to low temperature during early fry development in Harfjärden, where the stream leading up to the wetland dries out relatively early in the spring, forcing individuals to spawn early. The family-specific responses to temperature treatment indicate presence of genetic variation for developmental plasticity (G x E) within both populations. Protecting between- and within-population genetic variation for developmental plasticity and high temperature-related adaptive potential of early life history traits will be key to long-term viability and persistence in the face of continued climate change.


Asunto(s)
Adaptación Fisiológica , Esocidae/fisiología , Temperatura , Animales , Frío , Esocidae/anatomía & histología , Femenino , Geografía , Masculino , Reproducción , Suecia , Agua
13.
Proc Biol Sci ; 285(1879)2018 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-29848654

RESUMEN

In terrestrial environments, cold-blooded animals can attain higher body temperatures by sun basking, and thereby potentially benefit from broader niches, improved performance and higher fitness. The higher heat capacity and thermal conductivity of water compared with air have been universally assumed to render heat gain from sun basking impossible for aquatic ectotherms, such that their opportunities to behaviourally regulate body temperature are largely limited to choosing warmer or colder habitats. Here we challenge this paradigm. Using physical models we first show that submerged objects exposed to natural sunlight attain temperatures in excess of ambient water. We next demonstrate that free-ranging carp (Cyprinus carpio) can increase their body temperature during aquatic sun basking close to the surface. The temperature excess gained by basking was larger in dark than in pale individuals, increased with behavioural boldness, and was associated with faster growth. Overall, our results establish aquatic sun basking as a novel ecologically significant mechanism for thermoregulation in fish. The discovery of this previously overlooked process has practical implications for aquaculture, offers alternative explanations for behavioural and phenotypic adaptations, will spur future research in fish ecology, and calls for modifications of models concerning climate change impacts on biodiversity in marine and freshwater environments.


Asunto(s)
Regulación de la Temperatura Corporal , Temperatura Corporal , Carpas/fisiología , Animales , Femenino , Masculino , Agua/análisis
14.
J Therm Biol ; 74: 100-109, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29801614

RESUMEN

We asked whether ambient temperatures can affect morph frequencies within a subarctic population of the polymorphic leaf beetle Chrysomela lapponica through thermal melanism and/or developmental plasticity. Body temperature increased faster in beetles of dark morph than in beetles of light morph under exposure to artificial irradiation. Dark males ran faster than light males in both field and laboratory experiments, and this difference decreased with increasing ambient air temperature, from significant at 10 °C to non-significant at 20 °C and 26 °C. On cold days (6-14 °C), significantly more dark males than light males were found on their host plants in copula (40.8% and 27.3% respectively); on warm days (15-22 °C) this difference disappeared. Light females produced twice as many eggs as dark females; this difference did not depend on the ambient temperature. The proportion of dark morphs in the progenies of pairs with one dark parent was twice as high as that in the progenies of pairs in which both parents were light, and this proportion was greater when larvae developed at low (10 and 15 °C) than at high (20 and 25 °C) temperatures. We conclude that low temperatures may increase the frequencies of dark morphs in C. lapponica populations due to both the mating advantages of dark males over light males and developmental plasticity. Variation in frequencies of low-fecund dark morphs in the population, caused by among-year differences in temperature together with density-dependent selection, may contribute to the evolutionary dynamics of the colour polymorphism and may influence abundance fluctuations in these leaf beetle populations.


Asunto(s)
Regulación de la Temperatura Corporal , Escarabajos/crecimiento & desarrollo , Fenotipo , Pigmentación , Temperatura , Animales , Temperatura Corporal , Color , Femenino , Masculino , Melaninas , Actividad Motora
15.
Proc Natl Acad Sci U S A ; 111(1): 302-7, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24367109

RESUMEN

There is abundant evidence that the probability of successful establishment in novel environments increases with number of individuals in founder groups and with number of repeated introductions. Theory posits that the genotypic and phenotypic variation among individuals should also be important, but few studies have examined whether founder diversity influences establishment independent of propagule pressure, nor whether the effect is model or context dependent. I summarize the results of 18 experimental studies and report on a metaanalysis that provides strong evidence that higher levels of genotypic and phenotypic diversity in founder groups increase establishment success in plants and animals. The effect of diversity is stronger in experiments carried out under natural conditions in the wild than under seminatural or standardized laboratory conditions. The realization that genetic and phenotypic variation is key to successful establishment may improve the outcome of reintroduction and translocation programs used to vitalize or restore declining and extinct populations. Founder diversity may also improve the ability of invasive species to establish and subsequently spread in environments outside of their native community, and enhance the ability of pathogens and parasites to colonize and invade the environment constituted by their hosts. It is argued that exchange of ideas, methodological approaches, and insights of the role of diversity for establishment in different contexts may further our knowledge, vitalize future research, and improve management plans in different disciplines.


Asunto(s)
Conservación de los Recursos Naturales , Especies Introducidas , Algoritmos , Animales , Biodiversidad , Control de Enfermedades Transmisibles , Enfermedades Transmisibles/transmisión , Ecología , Variación Genética , Genotipo , Humanos , Modelos Biológicos , Fenotipo , Análisis de Regresión
16.
Mol Ecol ; 25(12): 2693-8, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27178084

RESUMEN

I am writing in response to an article by Bolton, Rollins and Griffith (2015) entitled 'The danger within: the role of genetic, behavioural and ecological factors in population persistence of colour polymorphic species' that was recently published as an Opinion under the NEWS AND VIEWS section in Molecular Ecology. Bolton et al. (Molecular Ecology, 2015, 24, 2907) argue that colour polymorphism may reduce population fitness and increase extinction risk and emphasize that this is contrary to predictions put forward by Forsman et al. (Ecology, 89, 2008, 34) and Wennersten & Forsman (Biological Reviews 87, 2012, 756) that the existence of multiple colour morphs with co-adapted gene complexes and associated trait values may increase the ecological and evolutionary success of polymorphic populations and species. Bolton et al. (Molecular Ecology, 2015, 24, 2907) further state that there is no clear evidence from studies of 'true polymorphic species' that polymorphism promotes population persistence. In response, I (i) challenge their classifications of polymorphisms and revisit the traditional definitions recognizing the dynamic nature of polymorphisms, (ii) review empirical studies that have examined whether and how polymorphism is associated with extinction risk, (iii) discuss the roles of trait correlations between colour pattern and other phenotypic dimensions for population fitness and (iv) highlight that the causes and mechanisms that influence the composition and maintenance of polymorphisms are different from the consequences of the polymorphic condition and how it may impact on aspects of ecological success and long-term persistence of populations and species.


Asunto(s)
Color , Polimorfismo Genético , Evolución Biológica , Ecología , Ecosistema , Efecto Fundador , Variación Genética , Saltamontes , Fenotipo , Pigmentos Biológicos , Dinámica Poblacional
17.
J Anim Ecol ; 85(1): 136-45, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26412457

RESUMEN

Many organisms undertake migrations between foraging and breeding habitats and while it is assumed that reproductive timing affects fitness, little is known about the degree of individual consistency, and about the causes and consequences of individual variation in migratory timing in organisms other than birds. Here, we report on a 6-year mark-recapture study, including 2048 individuals, of breeding migration in anadromous pike (Esox lucius), an iteroparous top-predatory fish that displays homing behaviour. By repeated sampling across years at a breeding site, we first quantify individual variation both within and between breeding events and then investigate phenotypic correlates and fitness consequences of arrival timing to the breeding site. Our data demonstrate that males arrive before females, that large males arrive later than small males, that the timing of breeding migration varies among years and that individuals are consistent in their timing across years relative to other individuals in the population. Furthermore, data on return rates indicate that arrival time is under stabilizing viability selection, and that individuals who are more flexible in their timing of arrival during the first reproductive years survive longer compared with less flexible individuals. Finally, longitudinal data demonstrate that individuals consistently fine-tune their arrival timing across years, showing that the timing of arrival to breeding sites is influenced by experience. These findings represent rare evidence of how between- and within-individual variations in migratory timing across breeding events are correlated with phenotypic and fitness traits in an ecologically important keystone species. Our results emphasize the importance of considering variation in migratory timing both between and within individuals in studies investigating the fitness consequences of migratory behaviour and have implications for future management.


Asunto(s)
Migración Animal , Esocidae/fisiología , Animales , Masculino , Reproducción , Estaciones del Año , Suecia
18.
Am Nat ; 186(1): 98-110, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26098342

RESUMEN

Evolutionary theory predicts that different selective regimes may contribute to divergent evolution of body size and growth rate among populations, but most studies have focused on allopatric populations. Here, we studied five sympatric subpopulations of anadromous northern pike (Esox lucius) in the Baltic Sea subjected to allopatric habitats for a short period of their life cycle due to homing behavior. We report differences in adult body size among subpopulations that were in part due to variation in growth rate. Body size of emigrating juveniles also differed among subpopulations, and differences remained when individuals were reared in a common environment, thus indicating evolutionary divergence among subpopulations. Furthermore, a QST-FST comparison indicated that differences had evolved due to divergent selection rather than genetic drift, possibly in response to differences in selective mortality among spawning habitats during the allopatric life stage. Adult and juvenile size were negatively correlated across subpopulations, and reconstruction of growth trajectories of adult fishes suggested that body size differences developed gradually and became accentuated throughout the first years of life. These results represent rare evidence that sympatric subpopulations can evolve differences in key life-history traits despite being subjected to allopatric habitats during only a very short fraction of their life.


Asunto(s)
Tamaño Corporal/genética , Ecosistema , Esocidae/anatomía & histología , Esocidae/crecimiento & desarrollo , Simpatría , Animales , Evolución Biológica , Esocidae/genética , Variación Genética , Selección Genética
19.
Proc Biol Sci ; 282(1808): 20142922, 2015 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-25972462

RESUMEN

Theory and recent reviews state that greater genetic and phenotypic variation should be beneficial for population abundance and stability. Experimental evaluations of this prediction are rare, of short duration and conducted under controlled environmental settings. The question whether greater diversity in functionally important traits stabilizes populations under more complex ecological conditions in the wild has not been systematically evaluated. Moths are mainly nocturnal, with a large variation in colour patterns among species, and constitute an important food source for many types of organisms. Here, we report the results of a long-term (2003-2013) monitoring study of 115 100 noctuid moths from 246 species. Analysis of time-series data provide rare evidence that species with higher levels of inter-individual variation in colour pattern have higher average abundances and undergo smaller between-year fluctuations compared with species having less variable colour patterns. The signature of interspecific temporal synchronization of abundance fluctuations was weak, suggesting that the dynamics were driven by species-specific biotic interactions rather than by some common, density-independent factor(s). We conclude that individual variation in colour patterns dampens population abundance fluctuations, and suggest that this may partly reflect that colour pattern polymorphism provides protection from visually oriented predators and parasitoids.


Asunto(s)
Mariposas Nocturnas/fisiología , Pigmentación , Animales , Ecosistema , Femenino , Larva/crecimiento & desarrollo , Larva/fisiología , Masculino , Mariposas Nocturnas/crecimiento & desarrollo , Dinámica Poblacional , Suecia
20.
Front Microbiol ; 15: 1393538, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38912348

RESUMEN

The world's oceans are challenged by climate change linked warming with typically highly populated coastal areas being particularly susceptible to these effects. Many studies of climate change on the marine environment use large, short-term temperature manipulations that neglect factors such as long-term adaptation and seasonal cycles. In this study, a Baltic Sea 'heated' bay influenced by thermal discharge since the 1970s from a nuclear reactor (in relation to an unaffected nearby 'control' bay) was used to investigate how elevated temperature impacts surface water microbial communities and activities. 16S rRNA gene amplicon based microbial diversity and population structure showed no difference in alpha diversity in surface water microbial communities, while the beta diversity showed a dissimilarity between the bays. Amplicon sequencing variant relative abundances between the bays showed statistically higher values for, e.g., Ilumatobacteraceae and Burkholderiaceae in the heated and control bays, respectively. RNA transcript-derived activities followed a similar pattern in alpha and beta diversity with no effect on Shannon's H diversity but a significant difference in the beta diversity between the bays. The RNA data further showed more elevated transcript counts assigned to stress related genes in the heated bay that included heat shock protein genes dnaKJ, the co-chaperonin groS, and the nucleotide exchange factor heat shock protein grpE. The RNA data also showed elevated oxidative phosphorylation transcripts in the heated (e.g., atpHG) compared to control (e.g., atpAEFB) bay. Furthermore, genes related to photosynthesis had generally higher transcript numbers in the control bay, such as photosystem I (psaAC) and II genes (psbABCEH). These increased stress gene responses in the heated bay will likely have additional cascading effects on marine carbon cycling and ecosystem services.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda