RESUMEN
A method to characterize the spatial coherence of soft X-ray radiation from a single diffraction pattern is presented. The technique is based on scattering from non-redundant arrays (NRAs) of slits and records the degree of spatial coherence at several relative separations from 1 to 15â µm, simultaneously. Using NRAs the spatial coherence of the X-ray beam at the XUV X-ray beamline P04 of the PETRAâ III synchrotron storage ring was measured as a function of different beam parameters. To verify the results obtained with the NRAs, additional Young's double-pinhole experiments were conducted and showed good agreement.
RESUMEN
We present results of single-shot resonant magnetic scattering experiments of Co/Pt multilayer systems using 100 fs long ultraintense pulses from an extreme ultraviolet (XUV) free-electron laser. An x-ray-induced breakdown of the resonant magnetic scattering channel during the pulse duration is observed at fluences of 5 J/cm(2). Simultaneously, the speckle contrast of the high-fluence scattering pattern is significantly reduced. We performed simulations of the nonequilibrium evolution of the Co/Pt multilayer system during the XUV pulse duration. We find that the electronic state of the sample is strongly perturbed during the first few femtoseconds of exposure leading to an ultrafast quenching of the resonant magnetic scattering mechanism.
RESUMEN
We report on experiments using Fourier transform holography to image the in-plane magnetization of a magnetic microstructure. Magnetic sensitivity is achieved via the x-ray magnetic circular dichroism effect by recording holograms in transmission at off-normal incidence. The reference beam is defined by a narrow hole milled at an inclined angle into the opaque mask. We present magnetic domain images of an in-plane magnetized cobalt element with a size of 2 µm × 2 µm× 20 nm. The domain pattern shows a multi-vortex state that deviates from the simple Landau ground state.
Asunto(s)
Dicroismo Circular/instrumentación , Dicroismo Circular/métodos , Cobalto/química , Holografía/instrumentación , Holografía/métodos , Magnetismo/instrumentación , Algoritmos , Diseño de Equipo , Análisis de Falla de EquipoRESUMEN
We have studied the magnetic domain structure in Permalloy rectangles that reveal flux-closure domain configurations. Arrays with varying spacing between the rectangles are investigated by scanning electron microscopy with polarization analysis as well as by micromagnetic simulation. In contrast to general expectation, rectangles in the flux-closure Landau state show significant coupling and form a magnetic pattern of common chirality. The coupling is due to the stray field that originates from small changes of the magnetization alignment, which is sensitive to the exact shape and the separation of the rectangles.
RESUMEN
A transmission polarizer for producing elliptically polarized soft X-ray radiation from linearly polarized light is presented. The setup is intended for use at synchrotron and free-electron laser beamlines that do not directly offer circularly polarized light for, e.g., X-ray magnetic circular dichroism (XMCD) measurements or holographic imaging. Here, we investigate the degree of ellipticity upon transmission of linearly polarized radiation through a cobalt thin film. The experiment was performed at a photon energy resonant to the Co L3-edge, i.e., 778 eV, and the polarization of the transmitted radiation was determined using a polarization analyzer that measures the directional dependence of photo electrons emitted from a gas target. Elliptically polarized radiation can be created at any absorption edge showing the XMCD effect by using the respective magnetic element.
RESUMEN
An endstation for pump-probe small-angle X-ray scattering (SAXS) experiments at the free-electron laser in Hamburg (FLASH) is presented. The endstation houses a solid-state absorber, optical incoupling for pump-probe experiments, time zero measurement, sample chamber, and detection unit. It can be used at all FLASH beamlines in the whole photon energy range offered by FLASH. The capabilities of the setup are demonstrated by showing the results of resonant magnetic SAXS measurements on cobalt-platinum multilayer samples grown on freestanding Si(3)N(4) membranes and pump-laser-induced grid structures in multilayer samples.
RESUMEN
FERMI@Elettra, the first vacuum ultraviolet and soft X-ray free-electron laser (FEL) using by default a "seeded" scheme, became operational in 2011 and has been opened to users since December 2012. The parameters of the seeded FERMI FEL pulses and, in particular, the superior control of emitted radiation in terms of spectral purity and stability meet the stringent requirements for single-shot and resonant coherent diffraction imaging (CDI) experiments. The advantages of the intense seeded FERMI pulses with variable polarization have been demonstrated with the first experiments performed using the multipurpose experimental station operated at the diffraction and projection imaging (DiProI) beamline. The results reported here were obtained with fixed non-periodic targets during the commissioning period in 2012 using 20-32 nm wavelength range. They demonstrate that the performance of the FERMI FEL source and the experimental station meets the requirements of CDI, holography, and resonant magnetic scattering in both multi- and single-shot modes. Moreover, we present the first magnetic scattering experiments employing the fully circularly polarized FERMI pulses. The ongoing developments aim at pushing the lateral resolution by using shorter wavelengths provided by double-stage cascaded FERMI FEL-2 and probing ultrafast dynamic processes using different pump-probe schemes, including jitter-free seed laser pump or FEL-pump∕FEL-probe with two color FEL pulses generated by the same electron bunch.
RESUMEN
The time stability of a polarization analyzer that is used for imaging of magnetic structures in a scanning electron microscope with spin polarization analysis (spin-SEM or SEMPA) is investigated. The detector is based on the diffraction of low-energy electrons at a W(100) crystal at 104.5 eV (LEED detector). Due to the adsorption of hydrogen from residual gas, a change of the scattering conditions is found that causes an angular shift of the LEED beams as well as changes of intensity. The quality factor, which describes the efficiency of the detector in SEMPA application, however, is found to be almost constant up to a hydrogen coverage of θ ≈ 0.25. This gives stable working conditions within roughly 1 h at vacuum conditions of 10(-10) mbar.
RESUMEN
During ultrafast demagnetization of a magnetically ordered solid, angular momentum has to be transferred between the spins, electrons, and phonons in the system on femto- and picosecond timescales. Although the intrinsic spin-transfer mechanisms are intensely debated, additional extrinsic mechanisms arising due to nanoscale heterogeneity have only recently entered the discussion. Here we use femtosecond X-ray pulses from a free-electron laser to study thin film samples with magnetic domain patterns. We observe an infrared-pump-induced change of the spin structure within the domain walls on the sub-picosecond timescale. This domain-topography-dependent contribution connects the intrinsic demagnetization process in each domain with spin-transport processes across the domain walls, demonstrating the importance of spin-dependent electron transport between differently magnetized regions as an ultrafast demagnetization channel. This pathway exists independent from structural inhomogeneities such as chemical interfaces, and gives rise to an ultrafast spatially varying response to optical pump pulses.
RESUMEN
Coherent diffractive imaging for the reconstruction of a two-dimensional (2D) finite crystal structure with a single pulse train of free-electron laser radiation at 7.97 nm wavelength is demonstrated. This measurement shows an advance on traditional coherent imaging techniques by applying it to a periodic structure. It is also significant that this approach paves the way for the imaging of the class of specimens which readily form 2D, but not three-dimensional crystals. We show that the structure is reconstructed to the detected resolution, given an adequate signal-to-noise ratio.