Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Oncologist ; 24(10): 1305-1308, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31391294

RESUMEN

Identification of effective targeted therapies for recurrent/metastatic head and neck squamous cell carcinoma (HNSCC) remains an unmet medical need. A patient with platinum-refractory recurrent oral cavity HNSCC underwent comprehensive genomic profiling (CGP) that identified an activating MET mutation (R1004). The patient was treated with the oral MET tyrosine kinase inhibitor crizotinib with rapid response to treatment.Based on this index case, we determined the frequency of MET alterations in 1,637 HNSCC samples, which had been analyzed with hybrid capture-based CGP performed in the routine course of clinical care. The specimens were sequenced to a median depth of >500× for all coding exons from 182 (version 1, n = 24), 236 (version 2, n = 326), or 315 (version 3, n = 1,287) cancer-related genes, plus select introns from 14 (version 1), 19 (version 2), or 28 (version 3) genes frequently rearranged in cancer. We identified 13 HNSCC cases (0.79%) with MET alterations (4 point mutation events and 9 focal amplification events). MET-mutant or amplified tumors represent a small but potentially actionable molecular subset of HNSCC. KEY POINTS: This case report is believed to be the first reported pan-cancer case of a patient harboring a MET mutation at R1004 demonstrating a clinical response to crizotinib, in addition to the first documented case of head and neck squamous cell carcinoma (HNSCC) with any MET alteration responding to crizotinib.The positive response to MET inhibition in this patient highlights the significance of comprehensive genomic profiling in advanced metastatic HNSCC to identify actionable targetable molecular alterations as current treatment options are limited.


Asunto(s)
Crizotinib/uso terapéutico , Genómica/métodos , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Crizotinib/farmacología , Humanos , Masculino , Persona de Mediana Edad , Mutación , Carcinoma de Células Escamosas de Cabeza y Cuello/patología
2.
Endocr Res ; 38(3): 139-150, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23102272

RESUMEN

AIM: To test the transactivation domain-mediated control of glucose homeostasis by the tumor suppressor p53. BACKGROUND: The tumor suppressor p53 has a critical role in maintenance of glucose homeostasis. Phosphorylation of Ser18 in the transaction domain of p53 controls the expression of Zpf385a, a zinc finger protein that regulates adipogenesis and adipose function. This results suggest that the transactivation domain of p53 is essential to the control of glucose homeostasis. MATERIALS AND METHODS: Mice with mutations in the p53 transactivation domain were examined for glucose homeostasis as well as various metabolic parameters. Glucose tolerance and insulin tolerance tests were performed on age matched wild type and mutant animals. In addition, mice expressing increased dosage of p53 were also examined. RESULTS: Mice with a mutation in p53Ser18 exhibit reduced Zpf385a expression in adipose tissue, adipose tissue-specific insulin resistance, and glucose intolerance. Mice with relative deficits in the transactivation domain of p53 exhibit similar defects in glucose homeostasis, while "Super p53" mice with an increased dosage of p53 exhibit improved glucose tolerance. CONCLUSION: These data support the role of an ATM-p53 cellular stress axis that helps combat glucose intolerance and insulin resistance and regulates glucose homeostasis.

3.
J Tissue Eng Regen Med ; 12(2): e1068-e1075, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28371514

RESUMEN

Surgical repair of caustic oesophageal injuries with autologous gastrointestinal segments is often associated with dysmotility, dysphagia and donor site morbidity, and therefore alternative graft options are needed. Bilayer silk fibroin (BLSF) scaffolds were assessed for their ability to support functional restoration of damaged oesophageal tissues in a rat model of onlay oesophagoplasty. Transient exposure of isolated oesophageal segments with 40% NaOH led to corrosive oesophagitis and a 91% reduction in the luminal cross-sectional area of damaged sites. Oesophageal repair with BLSF matrices was performed in injured rats (n = 27) as well as a nondiseased cohort (n = 12) for up to 2 months after implantation. Both implant groups exhibited >80% survival rates, displayed similar degrees of weight gain, and were capable of solid food consumption following a 3-day liquid diet. End-point µ-computed tomography of repaired sites demonstrated a 4.5-fold increase in luminal cross-sectional area over baseline injury levels. Reconstructed oesophageal conduits from damaged and nondiseased animals produced comparable contractile responses to KCl and electric field stimulation while isoproterenol generated similar tissue relaxation responses. Histological and immunohistochemical evaluations of neotissues from both implant groups showed formation of a stratified, squamous epithelium with robust cytokeratin expression as well as skeletal and smooth muscle layers positive for contractile protein expression. In addition, synaptophysin positive neuronal junctions and vessels lined with CD31 positive endothelial cells were also observed at graft sites in each setting. These results provide preclinical validation for the use of BLSF scaffolds in reconstructive strategies for oesophageal repair following caustic injury.


Asunto(s)
Esófago/lesiones , Esófago/patología , Fibroínas/farmacología , Andamios del Tejido/química , Cicatrización de Heridas/efectos de los fármacos , Animales , Cáusticos , Modelos Animales de Enfermedad , Esófago/efectos de los fármacos , Femenino , Ratas Sprague-Dawley
4.
J Tissue Eng Regen Med ; 12(2): e894-e904, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28084044

RESUMEN

Partial circumferential, full thickness defects of the esophagus can occur as a result of organ perforation or tumour resection, or during surgical reconstruction of strictured segments. Complications associated with autologous tissue flaps conventionally utilized for defect repair necessitate the development of new graft options. In this study, bi-layer silk fibroin (BLSF) scaffolds were investigated for their potential to support functional restoration of partial circumferential defects in a porcine model of esophageal repair. Onlay thoracic esophagoplasty with BLSF matrices (~3 x 1.5 cm) was performed in adult swine (N = 6) for 3 months of implantation. All animals receiving BLSF grafts survived with no complications and were capable of solid food consumption. Radiographic esophagrams revealed preservation of organ continuity with no evidence of contrast extravasation or strictures. Fluoroscopic analysis demonstrated peristaltic contractions. Ex vivo tissue bath studies displayed contractile responses to carbachol, electric field stimulation, and KCl while isoproterenol produced tissue relaxation. Histological and immunohistochemical evaluations of neotissues showed a stratified, squamous epithelium, a muscularis mucosa composed of smooth muscle bundles, and a muscularis externa organized into circular and longitudinal layers, with a mix of striated skeletal muscle fascicles interspersed with smooth muscle. De novo innervation and vascularization were observed throughout the graft sites and consisted of synaptophysin-positive neuronal boutons and vessels lined with CD31-positive endothelial cells. The results of this study demonstrate that BLSF scaffolds can facilitate constructive remodeling of partial circumferential, full thickness esophageal defects in a large animal model. Copyright © 2017 John Wiley & Sons, Ltd.


Asunto(s)
Esofagoplastia , Fibroínas/farmacología , Modelos Biológicos , Regeneración/efectos de los fármacos , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Porcinos
5.
Stem Cell Reports ; 9(6): 2005-2017, 2017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-29173895

RESUMEN

The bladder urothelium functions as a urine-blood barrier and consists of basal, intermediate, and superficial cell populations. Reconstructive procedures such as augmentation cystoplasty and focal mucosal resection involve localized surgical damage to the bladder wall whereby focal segments of the urothelium and underlying submucosa are respectively removed or replaced and regeneration ensues. We demonstrate using lineage-tracing systems that urothelial regeneration following augmentation cystoplasty with acellular grafts exclusively depends on host keratin 5-expressing basal cells to repopulate all lineages of the de novo urothelium at implant sites. Conversely, repair of focal mucosal defects not only employs this mechanism, but in parallel host intermediate cell daughters expressing uroplakin 2 give rise to themselves and are also contributors to superficial cells in neotissues. These results highlight the diversity of urothelial regenerative responses to surgical injury and may lead to advancements in bladder tissue engineering approaches.


Asunto(s)
Queratina-5/genética , Regeneración/genética , Vejiga Urinaria/crecimiento & desarrollo , Uroplaquina II/genética , Urotelio/crecimiento & desarrollo , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , Rastreo Celular/métodos , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Complicaciones Intraoperatorias/metabolismo , Complicaciones Intraoperatorias/patología , Ratones , Ingeniería de Tejidos , Vejiga Urinaria/lesiones , Vejiga Urinaria/metabolismo , Orina/fisiología , Urotelio/lesiones , Urotelio/metabolismo
6.
PLoS One ; 10(11): e0141492, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26529505

RESUMEN

Neurogenic detrusor overactivity and the associated loss of bladder control are among the most challenging complications of spinal cord injury (SCI). Anticholinergic agents are the mainstay for medical treatment of detrusor overactivity. However, their use is limited by significant side effects such that a search for new treatments is warranted. Inosine is a naturally occurring purine nucleoside with neuroprotective, neurotrophic and antioxidant effects that is known to improve motor function in preclinical models of SCI. However, its effect on lower urinary tract function has not been determined. The objectives of this study were to determine the effect of systemic administration of inosine on voiding function following SCI and to delineate potential mechanisms of action. Sprague-Dawley rats underwent complete spinal cord transection, or cord compression by application of an aneurysm clip at T8 for 30 sec. Inosine (225 mg/kg) or vehicle was administered daily via intraperitoneal injection either immediately after injury or after a delay of 8 wk. At the end of treatment, voiding behavior was assessed by cystometry. Levels of synaptophysin (SYP), neurofilament 200 (NF200) and TRPV1 in bladder tissues were measured by immunofluorescence imaging. Inosine administration decreased overactivity in both SCI models, with a significant decrease in the frequency of spontaneous non-voiding contractions during filling, compared to vehicle-treated SCI rats (p<0.05), including under conditions of delayed treatment. Immunofluorescence staining demonstrated increased levels of the pan-neuronal marker SYP and the Adelta fiber marker NF200, but decreased staining for the C-fiber marker, TRPV1 in bladder tissues from inosine-treated rats compared to those from vehicle-treated animals, including after delayed treatment. These findings demonstrate that inosine prevents the development of detrusor overactivity and attenuates existing overactivity following SCI, and may achieve its effects through modulation of sensory neurotransmission.


Asunto(s)
Inosina/farmacología , Traumatismos de la Médula Espinal/tratamiento farmacológico , Vejiga Urinaria Hiperactiva/tratamiento farmacológico , Vejiga Urinaria/fisiopatología , Animales , Masculino , Proteínas de Neurofilamentos/metabolismo , Ratas , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología , Sinaptofisina/metabolismo , Canales Catiónicos TRPV/metabolismo , Vejiga Urinaria/metabolismo , Vejiga Urinaria/patología , Vejiga Urinaria Hiperactiva/etiología , Vejiga Urinaria Hiperactiva/metabolismo , Vejiga Urinaria Hiperactiva/patología , Vejiga Urinaria Hiperactiva/fisiopatología
7.
Biomaterials ; 53: 149-59, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25890715

RESUMEN

Surgical management of long-gap esophageal defects with autologous gastrointestinal tissues is frequently associated with adverse complications including organ dysmotility, dysphagia, and donor site morbidity. In order to develop alternative graft options, bi-layer silk fibroin (SF) scaffolds were investigated for their potential to support functional tissue regeneration in a rodent model of esophageal repair. Onlay esophagoplasty was performed with SF matrices (N = 40) in adult rats for up to 2 m of implantation. Parallel groups consisted of animals implanted with small intestinal submucosa (SIS) scaffolds (N = 22) or sham controls receiving esophagotomy alone (N = 20). Sham controls exhibited a 100% survival rate while rats implanted with SF and SIS scaffolds displayed respective survival rates of 93% and 91% prior to scheduled euthanasia. Animals in each experimental group were capable of solid food consumption following a 3 d post-op liquid diet and demonstrated similar degrees of weight gain throughout the study period. End-point µ-computed tomography at 2 m post-op revealed no evidence of contrast extravasation, fistulas, strictures, or diverticula in any of the implant groups. Ex vivo tissue bath studies demonstrated that reconstructed esophageal conduits supported by both SF and SIS scaffolds displayed contractile responses to carbachol, KCl and electrical field stimulation while isoproterenol produced tissue relaxation. Histological (Masson's trichrome and hematoxylin and eosin) and immunohistochemical (IHC) evaluations demonstrated both implant groups produced de novo formation of skeletal and smooth muscle bundles positive for contractile protein expression [fast myosin heavy chain (MY32) and α-smooth muscle actin (α-SMA)] within the graft site. However, SF matrices promoted a significant 4-fold increase in MY32+ skeletal muscle and a 2-fold gain in α-SMA+ smooth muscle in comparison to the SIS cohort as determined by histomorphometric analyses. A stratified squamous, keratinized epithelium expressing cytokeratin 5 and involucrin proteins was also present at 2 m post-op in all experimental groups. De novo innervation and vascularization were evident in all regenerated tissues indicated by the presence of synaptophysin (SYP38)+ boutons and vessels lined with CD31 expressing endothelial cells. In respect to SIS, the SF group supported a significant 4-fold increase in the density of SYP38+ boutons within the implant region. Evaluation of host tissue responses revealed that SIS matrices elicited chronic inflammatory reactions and severe fibrosis throughout the neotissues, in contrast to SF scaffolds. The results of this study demonstrate that bi-layer SF scaffolds represent promising biomaterials for onlay esophagoplasty, capable of producing superior regenerative outcomes in comparison to conventional SIS scaffolds.


Asunto(s)
Esofagoplastia/métodos , Fibroínas/química , Regeneración , Seda/química , Andamios del Tejido , Animales , Femenino , Ratas , Ratas Sprague-Dawley , Microtomografía por Rayos X
8.
J Tissue Eng ; 5: 2041731414556849, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25396043

RESUMEN

Silk fibroin scaffolds were investigated for their ability to support attachment, proliferation, and differentiation of human gastrointestinal epithelial and smooth muscle cell lines in order to ascertain their potential for tissue engineering. A bi-layer silk fibroin matrix composed of a porous silk fibroin foam annealed to a homogeneous silk fibroin film was evaluated in parallel with small intestinal submucosa scaffolds. AlamarBlue analysis revealed that silk fibroin scaffolds supported significantly higher levels of small intestinal smooth muscle cell, colon smooth muscle cell, and esophageal smooth muscle cell attachment in comparison to small intestinal submucosa. Following 7 days of culture, relative numbers of each smooth muscle cell population maintained on both scaffold groups were significantly elevated over respective 1-day levels-indicative of cell proliferation. Real-time reverse transcription polymerase chain reaction and immunohistochemical analyses demonstrated that both silk fibroin and small intestinal submucosa scaffolds were permissive for contractile differentiation of small intestinal smooth muscle cell, colon smooth muscle cell, esophageal smooth muscle cell as determined by significant upregulation of α-smooth muscle actin and SM22α messenger RNA and protein expression levels following transforming growth factor-ß1 stimulation. AlamarBlue analysis demonstrated that both matrix groups supported similar degrees of attachment and proliferation of gastrointestinal epithelial cell lines including colonic T84 cells and esophageal epithelial cells. Following 14 days of culture on both matrices, spontaneous differentiation of T84 cells toward an enterocyte lineage was confirmed by expression of brush border enzymes, lactase, and maltase, as determined by real-time reverse transcription polymerase chain reaction and immunohistochemical analyses. In contrast to small intestinal submucosa scaffolds, silk fibroin scaffolds supported spontaneous differentiation of esophageal epithelial cells toward a suprabasal cell lineage as indicated by significant upregulation of cytokeratin 4 and cytokeratin 13 messenger RNA transcript levels. In addition, esophageal epithelial cells maintained on silk fibroin scaffolds also produced significantly higher involucrin messenger RNA transcript levels in comparison to small intestinal submucosa counterparts, indicating an increased propensity for superficial, squamous cell specification. Collectively, these data provide evidence for the potential of silk fibroin scaffolds for gastrointestinal tissue engineering applications.

9.
PLoS One ; 9(3): e91592, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24632740

RESUMEN

Acellular scaffolds derived from Bombyx mori silk fibroin were investigated for their ability to support functional tissue regeneration in a rabbit model of urethra repair. A bi-layer silk fibroin matrix was fabricated by a solvent-casting/salt leaching process in combination with silk fibroin film casting to generate porous foams buttressed by homogeneous silk fibroin films. Ventral onlay urethroplasty was performed with silk fibroin grafts (Group 1, N = 4) (Width × Length, 1 × 2 cm(2)) in adult male rabbits for 3 m of implantation. Parallel control groups consisted of animals receiving small intestinal submucosa (SIS) implants (Group 2, N = 4) or urethrotomy alone (Group 3, N = 3). Animals in all groups exhibited 100% survival prior to scheduled euthanasia and achieved voluntary voiding following 7 d of initial catheterization. Retrograde urethrography of each implant group at 3 m post-op revealed wide urethral calibers and preservation of organ continuity similar to pre-operative and urethrotomy controls with no evidence of contrast extravasation, strictures, fistulas, or stone formation. Histological (hematoxylin and eosin and Masson's trichrome), immunohistochemical, and histomorphometric analyses demonstrated that both silk fibroin and SIS scaffolds promoted similar extents of smooth muscle and epithelial tissue regeneration throughout the original defect sites with prominent contractile protein (α-smooth muscle actin and SM22α) and cytokeratin expression, respectively. De novo innervation and vascularization were also evident in all regenerated tissues indicated by synaptophysin-positive neuronal cells and vessels lined with CD31 expressing endothelial cells. Following 3 m post-op, minimal acute inflammatory reactions were elicited by silk fibroin scaffolds characterized by the presence of eosinophil granulocytes while SIS matrices promoted chronic inflammatory responses indicated by mobilization of mononuclear cell infiltrates. The results of this study demonstrate that bi-layer silk fibroin scaffolds represent promising biomaterials for onlay urethroplasty, capable of promoting similar degrees of tissue regeneration in comparison to conventional SIS scaffolds, but with reduced immunogenicity.


Asunto(s)
Fibroínas , Regeneración , Seda , Andamios del Tejido , Uretra/cirugía , Animales , Materiales Biocompatibles , Fibroínas/química , Inmunohistoquímica , Inflamación/patología , Masculino , Modelos Animales , Conejos , Procedimientos de Cirugía Plástica , Seda/química , Uretra/patología
10.
Biomaterials ; 35(26): 7452-9, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24917031

RESUMEN

Adverse side-effects associated with enterocystoplasty for neurogenic bladder reconstruction have spawned the need for the development of alternative graft substitutes. Bi-layer silk fibroin (SF) scaffolds and small intestinal submucosa (SIS) matrices were investigated for their ability to support bladder tissue regeneration and function in a rat model of spinal cord injury (SCI). Bladder augmentation was performed with each scaffold configuration in SCI animals for 10 wk of implantation and compared to non-augmented control groups (normal and SCI alone). Animals subjected to SCI alone exhibited a 72% survival rate (13/18) while SCI rats receiving SIS and bi-layer SF scaffolds displayed respective survival rates of 83% (10/12) and 75% (9/12) over the course of the study period. Histological (Masson's trichrome analysis) and immunohistochemical (IHC) evaluations demonstrated both implant groups supported de novo formation of smooth muscle layers with contractile protein expression [α-smooth muscle actin (α-SMA) and SM22α] as well as maturation of multi-layer urothelia expressing cytokeratin (CK) and uroplakin 3A proteins. Histomorphometric analysis revealed bi-layer SF and SIS scaffolds respectively reconstituted 64% and 56% of the level of α-SMA+ smooth muscle bundles present in SCI-alone controls, while similar degrees of CK+ urothelium across all experimental groups were detected. Parallel evaluations showed similar degrees of vascular area and synaptophysin+ boutons in all regenerated tissues compared to SCI-alone controls. In addition, improvements in certain urodynamic parameters in SCI animals, such as decreased peak intravesical pressure, following implantation with both matrix configurations were also observed. The data presented in this study detail the ability of acellular SIS and bi-layer SF scaffolds to support formation of innervated, vascularized smooth muscle and urothelial tissues in a neurogenic bladder model.


Asunto(s)
Fibroínas/química , Mucosa Intestinal/química , Regeneración , Traumatismos de la Médula Espinal/cirugía , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Vejiga Urinaria/fisiología , Animales , Femenino , Ratas , Ratas Sprague-Dawley , Vejiga Urinaria/citología , Vejiga Urinaria/ultraestructura
11.
PLoS One ; 8(2): e56237, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23409160

RESUMEN

Silk-based biomaterials in combination with extracellular matrix (ECM) coatings were assessed as templates for cell-seeded bladder tissue engineering approaches. Two structurally diverse groups of silk scaffolds were produced by a gel spinning process and consisted of either smooth, compact multi-laminates (Group 1) or rough, porous lamellar-like sheets (Group 2). Scaffolds alone or coated with collagen types I or IV or fibronectin were assessed independently for their ability to support attachment, proliferation, and differentiation of primary cell lines including human bladder smooth muscle cells (SMC) and urothelial cells as well as pluripotent cell populations, such as murine embryonic stem cells (ESC) and induced pluripotent stem (iPS) cells. AlamarBlue evaluations revealed that fibronectin-coated Group 2 scaffolds promoted the highest degree of primary SMC and urothelial cell attachment in comparison to uncoated Group 2 controls and all Group 1 scaffold variants. Real time RT-PCR and immunohistochemical (IHC) analyses demonstrated that both fibronectin-coated silk groups were permissive for SMC contractile differentiation as determined by significant upregulation of α-actin and SM22α mRNA and protein expression levels following TGFß1 stimulation. Prominent expression of epithelial differentiation markers, cytokeratins, was observed in urothelial cells cultured on both control and fibronectin-coated groups following IHC analysis. Evaluation of silk matrices for ESC and iPS cell attachment by alamarBlue showed that fibronectin-coated Group 2 scaffolds promoted the highest levels in comparison to all other scaffold formulations. In addition, real time RT-PCR and IHC analyses showed that fibronectin-coated Group 2 scaffolds facilitated ESC and iPS cell differentiation toward both urothelial and smooth muscle lineages in response to all trans retinoic acid as assessed by induction of uroplakin and contractile gene and protein expression. These results demonstrate that silk scaffolds support primary and pluripotent cell responses pertinent to bladder tissue engineering and that scaffold morphology and fibronectin coatings influence these processes.


Asunto(s)
Materiales Biocompatibles/farmacología , Células Madre Embrionarias/citología , Proteínas de la Matriz Extracelular/farmacología , Células Madre Pluripotentes Inducidas/citología , Seda/química , Ingeniería de Tejidos/métodos , Vejiga Urinaria/citología , Animales , Línea Celular , Células Madre Embrionarias/efectos de los fármacos , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Ratones , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/efectos de los fármacos , Andamios del Tejido , Urotelio/citología , Urotelio/efectos de los fármacos
12.
Biomaterials ; 34(20): 4758-65, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23545287

RESUMEN

The diverse processing plasticity of silk-based biomaterials offers a versatile platform for understanding the impact of structural and mechanical matrix properties on bladder regenerative processes. Three distinct groups of 3-D matrices were fabricated from aqueous solutions of Bombyx mori silk fibroin either by a gel spinning technique (GS1 and GS2 groups) or a solvent-casting/salt-leaching method in combination with silk film casting (FF group). SEM analyses revealed that GS1 matrices consisted of smooth, compact multi-laminates of parallel-oriented silk fibers while GS2 scaffolds were composed of porous (pore size range, 5-50 µm) lamellar-like sheets buttressed by a dense outer layer. Bi-layer FF scaffolds were comprised of porous foams (pore size, ~400 µm) fused on their external face with a homogenous, nonporous silk film. Silk groups and small intestinal submucosa (SIS) matrices were evaluated in a rat model of augmentation cystoplasty for 10 weeks of implantation and compared to cystotomy controls. Gross tissue evaluations revealed the presence of intra-luminal stones in all experimental groups. The incidence and size of urinary calculi was the highest in animals implanted with gel spun silk matrices and SIS with frequencies ≥57% and stone diameters of 3-4 mm. In contrast, rats augmented with FF scaffolds displayed substantially lower rates (20%) and stone size (2 mm), similar to the levels observed in controls (13%, 2 mm). Histological (hematoxylin and eosin, Masson's trichrome) and immunohistochemical (IHC) analyses showed comparable extents of smooth muscle regeneration and contractile protein (α-smooth muscle actin and SM22α) expression within defect sites supported by all matrix groups similar to controls. Parallel evaluations demonstrated the formation of a transitional, multi-layered urothelium with prominent uroplakin and p63 protein expression in all experimental groups. De novo innervation and vascularization processes were evident in all regenerated tissues indicated by Fox3-positive neuronal cells and vessels lined with CD31 expressing endothelial cells. In comparison to other biomaterial groups, cystometric analyses at 10 weeks post-op revealed that animals implanted with the FF matrix configuration displayed superior urodynamic characteristics including compliance, functional capacity, as well as spontaneous non voiding contractions consistent with control levels. Our data demonstrate that variations in scaffold processing techniques can influence the in vivo functional performance of silk matrices in bladder reconstructive procedures.


Asunto(s)
Procedimientos de Cirugía Plástica/métodos , Seda/farmacología , Andamios del Tejido/química , Vejiga Urinaria/cirugía , Procedimientos Quirúrgicos Urológicos/métodos , Animales , Fenómenos Biomecánicos/efectos de los fármacos , Femenino , Inmunohistoquímica , Modelos Animales , Ratas , Ratas Sprague-Dawley , Regeneración/efectos de los fármacos , Vejiga Urinaria/inervación , Vejiga Urinaria/patología , Vejiga Urinaria/fisiopatología , Cálculos Urinarios/patología , Cálculos Urinarios/fisiopatología , Cálculos Urinarios/cirugía , Urodinámica/efectos de los fármacos
13.
Biomaterials ; 34(34): 8681-9, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23953839

RESUMEN

Acellular scaffolds derived from Bombyx mori silk fibroin were investigated for their ability to support functional tissue regeneration in a porcine model of augmentation cystoplasty. Two bi-layer matrix configurations were fabricated by solvent-casting/salt leaching either alone (Group 1) or in combination with silk film casting (Group 2) to yield porous foams buttressed by heterogeneous surface pore occlusions or homogenous silk films, respectively. Bladder augmentation was performed with each scaffold group (6 × 6 cm(2)) in juvenile Yorkshire swine for 3 m of implantation. Augmented animals exhibited high rates of survival (Group 1: 5/6, 83%; Group 2: 4/4, 100%) and voluntary voiding over the course of the study period. Urodynamic evaluations demonstrated mean increases in bladder capacity over pre-operative levels (Group 1: 277%; Group 2: 153%) which exceeded nonsurgical control gains (144%) encountered due to animal growth.In addition, animals augmented with both matrix configurations displayed increases in bladder compliance over pre-operative levels(Group 1: 357%; Group 2: 338%) similar to growth-related elevations observed in non-surgical controls (354%) [corrected]. Gross tissue evaluations revealed that both matrix configurations supported extensive de novo tissue formation throughout the entire original implantation site which exhibited ultimate tensile strength similar to nonsurgical counterparts. Histological and immunohistochemical analyses showed that both implant groups promoted comparable extents of smooth muscle regeneration and contractile protein (α-smooth muscle actin and SM22α) expression within defect sites similar to controls. Parallel evaluations demonstrated the formation of a transitional, multi-layered urothelium with prominent cytokeratin, uroplakin, and p63 protein expression in both matrix groups. De novo innervation and vascularization processes were evident in all regenerated tissues indicated by synaptophysin-positive neuronal cells and vessels lined with CD31 expressing endothelial cells. Ex vivo organ bath studies demonstrated that regenerated tissues supported by both silk matrices displayed contractile responses to carbachol, α,ß-methylene-ATP, KCl, and electrical field stimulation similar to controls. Our data detail the ability of acellular silk scaffolds to support regeneration of innervated, vascularized smooth muscle and urothelial tissues within 3 m with structural, mechanical, and functional properties comparable to native tissue in a porcine model of bladder repair.


Asunto(s)
Fibroínas/química , Regeneración/fisiología , Ingeniería de Tejidos/métodos , Andamios del Tejido , Vejiga Urinaria/metabolismo , Animales , Materiales Biocompatibles/química , Bombyx , Modelos Animales de Enfermedad , Femenino , Microscopía Electrónica de Rastreo , Contracción Muscular/fisiología , Músculo Liso/citología , Músculo Liso/metabolismo , Porcinos , Vejiga Urinaria/citología , Urodinámica/fisiología , Procedimientos Quirúrgicos Urológicos , Urotelio/citología , Urotelio/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda