Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Nature ; 603(7902): 687-692, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35062015

RESUMEN

The recent emergence of B.1.1.529, the Omicron variant1,2, has raised concerns of escape from protection by vaccines and therapeutic antibodies. A key test for potential countermeasures against B.1.1.529 is their activity in preclinical rodent models of respiratory tract disease. Here, using the collaborative network of the SARS-CoV-2 Assessment of Viral Evolution (SAVE) programme of the National Institute of Allergy and Infectious Diseases (NIAID), we evaluated the ability of several B.1.1.529 isolates to cause infection and disease in immunocompetent and human ACE2 (hACE2)-expressing mice and hamsters. Despite modelling data indicating that B.1.1.529 spike can bind more avidly to mouse ACE2 (refs. 3,4), we observed less infection by B.1.1.529 in 129, C57BL/6, BALB/c and K18-hACE2 transgenic mice than by previous SARS-CoV-2 variants, with limited weight loss and lower viral burden in the upper and lower respiratory tracts. In wild-type and hACE2 transgenic hamsters, lung infection, clinical disease and pathology with B.1.1.529 were also milder than with historical isolates or other SARS-CoV-2 variants of concern. Overall, experiments from the SAVE/NIAID network with several B.1.1.529 isolates demonstrate attenuated lung disease in rodents, which parallels preliminary human clinical data.


Asunto(s)
COVID-19/patología , COVID-19/virología , Modelos Animales de Enfermedad , SARS-CoV-2/patogenicidad , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Cricetinae , Femenino , Humanos , Pulmón/patología , Pulmón/virología , Masculino , Mesocricetus , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Carga Viral
2.
Nature ; 605(7911): 640-652, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35361968

RESUMEN

The global emergence of many severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants jeopardizes the protective antiviral immunity induced after infection or vaccination. To address the public health threat caused by the increasing SARS-CoV-2 genomic diversity, the National Institute of Allergy and Infectious Diseases within the National Institutes of Health established the SARS-CoV-2 Assessment of Viral Evolution (SAVE) programme. This effort was designed to provide a real-time risk assessment of SARS-CoV-2 variants that could potentially affect the transmission, virulence, and resistance to infection- and vaccine-induced immunity. The SAVE programme is a critical data-generating component of the US Government SARS-CoV-2 Interagency Group to assess implications of SARS-CoV-2 variants on diagnostics, vaccines and therapeutics, and for communicating public health risk. Here we describe the coordinated approach used to identify and curate data about emerging variants, their impact on immunity and effects on vaccine protection using animal models. We report the development of reagents, methodologies, models and notable findings facilitated by this collaborative approach and identify future challenges. This programme is a template for the response to rapidly evolving pathogens with pandemic potential by monitoring viral evolution in the human population to identify variants that could reduce the effectiveness of countermeasures.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Evolución Biológica , Vacunas contra la COVID-19 , Humanos , National Institute of Allergy and Infectious Diseases (U.S.) , Pandemias/prevención & control , Variantes Farmacogenómicas , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Estados Unidos/epidemiología , Virulencia
3.
Emerg Infect Dis ; 27(9): 2492-2494, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34424167

RESUMEN

Migratory birds play a major role in spreading influenza viruses over long distances. We report highly pathogenic avian influenza A(H5N6) viruses in migratory and resident ducks in Bangladesh. The viruses were genetically similar to viruses detected in wild birds in China and Mongolia, suggesting migration-associated dissemination of these zoonotic pathogens.


Asunto(s)
Virus de la Influenza A , Gripe Aviar , Animales , Bangladesh/epidemiología , Aves , Gripe Aviar/epidemiología , Aves de Corral
4.
J Virol ; 94(23)2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-32907981

RESUMEN

The genesis of novel influenza viruses through reassortment poses a continuing risk to public health. This is of particular concern in Bangladesh, where highly pathogenic avian influenza viruses of the A(H5N1) subtype are endemic and cocirculate with other influenza viruses. Active surveillance of avian influenza viruses in Bangladeshi live poultry markets detected three A(H5) genotypes, designated H5N1-R1, H5N1-R2, and H5N2-R3, that arose from reassortment of A(H5N1) clade 2.3.2.1a viruses. The H5N1-R1 and H5N1-R2 viruses contained HA, NA, and M genes from the A(H5N1) clade 2.3.2.1a viruses and PB2, PB1, PA, NP, and NS genes from other Eurasian influenza viruses. H5N2-R3 viruses contained the HA gene from circulating A(H5N1) clade 2.3.2.1a viruses, NA and M genes from concurrently circulating A(H9N2) influenza viruses, and PB2, PB1, PA, NP, and NS genes from other Eurasian influenza viruses. Representative viruses of all three genotypes and a parental clade 2.3.2.1a strain (H5N1-R0) infected and replicated in mice without prior adaptation; the H5N2-R3 virus replicated to the highest titers in the lung. All viruses efficiently infected and killed chickens. All viruses replicated in inoculated ferrets, but no airborne transmission was detected, and only H5N2-R3 showed limited direct-contact transmission. Our findings demonstrate that although the A(H5N1) viruses circulating in Bangladesh have the capacity to infect and replicate in mammals, they show very limited capacity for transmission. However, reassortment does generate viruses of distinct phenotypes.IMPORTANCE Highly pathogenic avian influenza A(H5N1) viruses have circulated continuously in Bangladesh since 2007, and active surveillance has detected viral evolution driven by mutation and reassortment. Recently, three genetically distinct A(H5N1) reassortant viruses were detected in live poultry markets in Bangladesh. Currently, we cannot assign pandemic risk by only sequencing viruses; it must be conducted empirically. We found that the H5Nx highly pathogenic avian influenza viruses exhibited high virulence in mice and chickens, and one virus had limited capacity to transmit between ferrets, a property considered consistent with a higher zoonotic risk.


Asunto(s)
Virus de la Influenza A/clasificación , Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/epidemiología , Gripe Aviar/virología , Mamíferos/virología , Filogenia , Aves de Corral/virología , Animales , Bangladesh/epidemiología , Pollos , Hurones , Genoma Viral , Genotipo , Subtipo H5N1 del Virus de la Influenza A , Subtipo H5N2 del Virus de la Influenza A , Subtipo H9N2 del Virus de la Influenza A , Virus de la Influenza A/genética , Gripe Aviar/patología , Gripe Aviar/transmisión , Pulmón/patología , Ratones , Pandemias , Enfermedades de las Aves de Corral/epidemiología , Enfermedades de las Aves de Corral/patología , Enfermedades de las Aves de Corral/transmisión , Enfermedades de las Aves de Corral/virología , Virus Reordenados/genética , Proteínas no Estructurales Virales/genética , Virulencia
7.
Emerg Infect Dis ; 22(12): 2137-2141, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27584733

RESUMEN

Highly pathogenic avian influenza A(H5N1), clade 2.3.2.1a, with an H9-like polymerase basic protein 1 gene, isolated in Bhutan in 2012, replicated faster in vitro than its H5N1 parental genotype and was transmitted more efficiently in a chicken model. These properties likely help limit/eradicate outbreaks, combined with strict control measures.


Asunto(s)
Genotipo , Subtipo H5N1 del Virus de la Influenza A/clasificación , Subtipo H5N1 del Virus de la Influenza A/genética , Gripe Aviar/epidemiología , Gripe Aviar/virología , Aves de Corral/virología , Virus Reordenados/genética , Animales , Bután/epidemiología , Brotes de Enfermedades , Geografía Médica , Humanos , Gripe Humana/epidemiología , Filogenia , Riesgo
8.
Emerg Infect Dis ; 21(10): 1834-6, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26402228

RESUMEN

To clarify the epidemiology of influenza A viruses in coordinated swine production systems to which no animals from outside the system are introduced, we conducted virologic surveillance during September 2012-September 2013. Animal age, geographic location, and farm type were found to affect the prevalence of these viruses.


Asunto(s)
Monitoreo Epidemiológico , Virus de la Influenza A/patogenicidad , Ganado/virología , Infecciones por Orthomyxoviridae/veterinaria , Enfermedades de los Porcinos/epidemiología , Porcinos/virología , Animales , Estados Unidos/epidemiología
9.
J Virol ; 88(2): 1175-88, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24227848

RESUMEN

H2N2 influenza A viruses were the cause of the 1957-1958 pandemic. Historical evidence demonstrates they arose from avian virus ancestors, and while the H2N2 subtype has disappeared from humans, it persists in wild and domestic birds. Reemergence of H2N2 in humans is a significant threat due to the absence of humoral immunity in individuals under the age of 50. Thus, examination of these viruses, particularly those from the avian reservoir, must be addressed through surveillance, characterization, and antiviral testing. The data presented here are a risk assessment of 22 avian H2N2 viruses isolated from wild and domestic birds over 6 decades. Our data show that they have a low rate of genetic and antigenic evolution and remained similar to isolates circulating near the time of the pandemic. Most isolates replicated in mice and human bronchial epithelial cells, but replication in swine tissues was low or absent. Multiple isolates replicated in ferrets, and 3 viruses were transmitted to direct-contact cage mates. Markers of mammalian adaptation in hemagglutinin (HA) and PB2 proteins were absent from all isolates, and they retained a preference for avian-like α2,3-linked sialic acid receptors. Most isolates remained antigenically similar to pandemic A/Singapore/1/57 (H2N2) virus, suggesting they could be controlled by the pandemic vaccine candidate. All viruses were susceptible to neuraminidase inhibitors and adamantanes. Nonetheless, the sustained pathogenicity of avian H2N2 viruses in multiple mammalian models elevates their risk potential for human infections and stresses the need for continual surveillance as a component of prepandemic planning.


Asunto(s)
Reservorios de Enfermedades/virología , Subtipo H2N2 del Virus de la Influenza A/patogenicidad , Gripe Aviar/virología , Gripe Humana/virología , Animales , Animales Salvajes/virología , Aves , Línea Celular , Hurones , Humanos , Subtipo H2N2 del Virus de la Influenza A/genética , Subtipo H2N2 del Virus de la Influenza A/aislamiento & purificación , Subtipo H2N2 del Virus de la Influenza A/fisiología , Ratones , Ratones Endogámicos DBA , Medición de Riesgo , Porcinos , Replicación Viral
10.
PLoS Pathog ; 8(7): e1002791, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22829764

RESUMEN

North American triple reassortant swine (TRS) influenza A viruses have caused sporadic human infections since 2005, but human-to-human transmission has not been documented. These viruses have six gene segments (PB2, PB1, PA, HA, NP, and NS) closely related to those of the 2009 H1N1 pandemic viruses. Therefore, understanding of these viruses' pathogenicity and transmissibility may help to identify determinants of virulence of the 2009 H1N1 pandemic viruses and to elucidate potential human health threats posed by the TRS viruses. Here we evaluated in a ferret model the pathogenicity and transmissibility of three groups of North American TRS viruses containing swine-like and/or human-like HA and NA gene segments. The study was designed only to detect informative and significant patterns in the transmissibility and pathogenicity of these three groups of viruses. We observed that irrespective of their HA and NA lineages, the TRS viruses were moderately pathogenic in ferrets and grew efficiently in both the upper and lower respiratory tracts. All North American TRS viruses studied were transmitted between ferrets via direct contact. However, their transmissibility by respiratory droplets was related to their HA and NA lineages: TRS viruses with human-like HA and NA were transmitted most efficiently, those with swine-like HA and NA were transmitted minimally or not transmitted, and those with swine-like HA and human-like NA (N2) showed intermediate transmissibility. We conclude that the lineages of HA and NA may play a crucial role in the respiratory droplet transmissibility of these viruses. These findings have important implications for pandemic planning and warrant confirmation.


Asunto(s)
Hurones , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Neuraminidasa/genética , Infecciones por Orthomyxoviridae/virología , Virus Reordenados/patogenicidad , Animales , Modelos Animales de Enfermedad , Perros , Glicoproteínas Hemaglutininas del Virus de la Influenza/clasificación , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/fisiología , Pulmón/patología , Pulmón/virología , Células de Riñón Canino Madin Darby , Masculino , Neuraminidasa/clasificación , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/transmisión , Pandemias , Virus Reordenados/genética , Virus Reordenados/fisiología , Replicación Viral
11.
Proc Natl Acad Sci U S A ; 108(1): 349-54, 2011 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-21173241

RESUMEN

Since the reemergence of highly pathogenic H5N1 influenza viruses in humans in 2003, these viruses have spread throughout avian species in Asia, Europe, and Africa. Their sustained circulation has resulted in the evolution of phylogenetically diverse lineages. Viruses from these lineages show considerable antigenic variation, which has confounded vaccine planning efforts. We reconstructed ancestral protein sequences at several nodes of the hemagglutinin (HA) and neuraminidase (NA) gene phylogenies that represent ancestors to diverse H5N1 virus clades. By using the same methods that have been used to generate currently licensed inactivated H5N1 vaccines, we were able to produce a panel of replication competent influenza viruses containing synthesized HA and NA genes representing the reconstructed ancestral proteins. We identified two of these viruses that showed promising in vitro cross-reactivity with clade 1, 2.1, 2.2, 2.3.4, and 4 viruses. To confirm that vaccine antigens derived from these viruses were able to elicit functional antibodies following immunization, we created whole-virus vaccines and compared their protective efficacy versus that of antigens from positive control, naturally occurring, and broadly reactive H5N1 viruses. The ancestral viruses' vaccines provided robust protection against morbidity and mortality in ferrets challenged with H5N1 strains from clades 1, 2.1, and 2.2 in a manner similar to those based on the control strains. These findings provide proof of principle that viable, computationally derived vaccine seed viruses can be constructed within the context of currently licensed vaccine platforms. Such technologies should be explored to enhance the cross reactivity and availability of H5N1 influenza vaccines.


Asunto(s)
Variación Antigénica/genética , Biología Computacional/métodos , Reacciones Cruzadas/genética , Evolución Molecular , Subtipo H5N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Filogenia , Secuencia de Aminoácidos , Animales , Hurones , Hemaglutininas/genética , Subtipo H5N1 del Virus de la Influenza A/genética , Funciones de Verosimilitud , Datos de Secuencia Molecular , Neuraminidasa/genética , Alineación de Secuencia , Especificidad de la Especie , Análisis de Supervivencia
12.
Nat Commun ; 15(1): 4350, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782954

RESUMEN

mRNA lipid nanoparticle (LNP) vaccines would be useful during an influenza virus pandemic since they can be produced rapidly and do not require the generation of egg-adapted vaccine seed stocks. Highly pathogenic avian influenza viruses from H5 clade 2.3.4.4b are circulating at unprecedently high levels in wild and domestic birds and have the potential to adapt to humans. Here, we generate an mRNA lipid nanoparticle (LNP) vaccine encoding the hemagglutinin (HA) glycoprotein from a clade 2.3.4.4b H5 isolate. The H5 mRNA-LNP vaccine elicits strong T cell and antibody responses in female mice, including neutralizing antibodies and broadly-reactive anti-HA stalk antibodies. The H5 mRNA-LNP vaccine elicits antibodies at similar levels compared to whole inactivated vaccines in female mice with and without prior H1N1 exposures. Finally, we find that the H5 mRNA-LNP vaccine is immunogenic in male ferrets and prevents morbidity and mortality of animals following 2.3.4.4b H5N1 challenge. Together, our data demonstrate that a monovalent mRNA-LNP vaccine expressing 2.3.4.4b H5 is immunogenic and protective in pre-clinical animal models.


Asunto(s)
Anticuerpos Antivirales , Hurones , Glicoproteínas Hemaglutininas del Virus de la Influenza , Subtipo H5N1 del Virus de la Influenza A , Vacunas contra la Influenza , Nanopartículas , Infecciones por Orthomyxoviridae , Vacunas de ARNm , Animales , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/administración & dosificación , Femenino , Ratones , Nanopartículas/química , Masculino , Subtipo H5N1 del Virus de la Influenza A/inmunología , Subtipo H5N1 del Virus de la Influenza A/genética , Anticuerpos Antivirales/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Vacunas de ARNm/inmunología , Anticuerpos Neutralizantes/inmunología , Ratones Endogámicos BALB C , Gripe Aviar/prevención & control , Gripe Aviar/inmunología , Gripe Aviar/virología , Humanos , ARN Mensajero/genética , ARN Mensajero/inmunología , ARN Mensajero/metabolismo , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H1N1 del Virus de la Influenza A/genética , Aves/virología , Lípidos/química , Liposomas
13.
Cell Rep ; 43(7): 114479, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39003741

RESUMEN

Highly pathogenic avian influenza (HPAI) viruses have spread at an unprecedented scale, leading to mass mortalities in birds and mammals. In 2023, a transatlantic incursion of HPAI A(H5N5) viruses into North America was detected, followed shortly thereafter by a mammalian detection. As these A(H5N5) viruses were similar to contemporary viruses described in Eurasia, the transatlantic spread of A(H5N5) viruses was most likely facilitated by pelagic seabirds. Some of the Canadian A(H5N5) viruses from birds and mammals possessed the PB2-E627K substitution known to facilitate adaptation to mammals. Ferrets inoculated with A(H5N5) viruses showed rapid, severe disease onset, with some evidence of direct contact transmission. However, these viruses have maintained receptor binding traits of avian influenza viruses and were susceptible to oseltamivir and zanamivir. Understanding the factors influencing the virulence and transmission of A(H5N5) in migratory birds and mammals is critical to minimize impacts on wildlife and public health.

14.
Nat Commun ; 15(1): 3449, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664384

RESUMEN

In 2017, a novel influenza A virus (IAV) was isolated from an Egyptian fruit bat. In contrast to other bat influenza viruses, the virus was related to avian A(H9N2) viruses and was probably the result of a bird-to-bat transmission event. To determine the cross-species spill-over potential, we biologically characterize features of A/bat/Egypt/381OP/2017(H9N2). The virus has a pH inactivation profile and neuraminidase activity similar to those of human-adapted IAVs. Despite the virus having an avian virus-like preference for α2,3 sialic acid receptors, it is unable to replicate in male mallard ducks; however, it readily infects ex-vivo human respiratory cell cultures and replicates in the lungs of female mice. A/bat/Egypt/381OP/2017 replicates in the upper respiratory tract of experimentally-infected male ferrets featuring direct-contact and airborne transmission. These data suggest that the bat A(H9N2) virus has features associated with increased risk to humans without a shift to a preference for α2,6 sialic acid receptors.


Asunto(s)
Quirópteros , Patos , Hurones , Subtipo H9N2 del Virus de la Influenza A , Infecciones por Orthomyxoviridae , Receptores de Superficie Celular , Animales , Quirópteros/virología , Humanos , Hurones/virología , Femenino , Masculino , Subtipo H9N2 del Virus de la Influenza A/fisiología , Subtipo H9N2 del Virus de la Influenza A/patogenicidad , Subtipo H9N2 del Virus de la Influenza A/aislamiento & purificación , Infecciones por Orthomyxoviridae/virología , Infecciones por Orthomyxoviridae/transmisión , Ratones , Patos/virología , Replicación Viral , Gripe Humana/virología , Gripe Humana/transmisión , Pulmón/virología , Gripe Aviar/virología , Gripe Aviar/transmisión , Neuraminidasa/metabolismo
15.
Emerg Infect Dis ; 19(9)2013.
Artículo en Inglés | MEDLINE | ID: mdl-23968540

RESUMEN

Human infection with avian influenza A(H9N2) virus was identified in Bangladesh in 2011. Surveillance for influenza viruses in apparently healthy poultry in live-bird markets in Bangladesh during 2008-2011 showed that subtype H9N2 viruses are isolated year-round, whereas highly pathogenic subtype H5N1 viruses are co-isolated with subtype H9N2 primarily during the winter months. Phylogenetic analysis of the subtype H9N2 viruses showed that they are reassortants possessing 3 gene segments related to subtype H7N3; the remaining gene segments were from the subtype H9N2 G1 clade. We detected no reassortment with subtype H5N1 viruses. Serologic analyses of subtype H9N2 viruses from chickens revealed antigenic conservation, whereas analyses of viruses from quail showed antigenic drift. Molecular analysis showed that multiple mammalian-specific mutations have become fixed in the subtype H9N2 viruses, including changes in the hemagglutinin, matrix, and polymerase proteins. Our results indicate that these viruses could mutate to be transmissible from birds to mammals, including humans.


Asunto(s)
Subtipo H9N2 del Virus de la Influenza A/genética , Subtipo H9N2 del Virus de la Influenza A/inmunología , Gripe Aviar/epidemiología , Gripe Humana/epidemiología , Animales , Antígenos Virales/inmunología , Bangladesh/epidemiología , Pollos , Genes Virales , Humanos , Subtipo H9N2 del Virus de la Influenza A/clasificación , Gripe Aviar/virología , Gripe Humana/virología , Datos de Secuencia Molecular , Filogenia , Prevalencia , Codorniz
16.
Emerg Microbes Infect ; 12(2): e2252510, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37622753

RESUMEN

Influenza virological surveillance was conducted in Bangladesh from January to December 2021 in live poultry markets (LPMs) and in Tanguar Haor, a wetland region where domestic ducks have frequent contact with migratory birds. The predominant viruses circulating in LPMs were low pathogenic avian influenza (LPAI) H9N2 and clade 2.3.2.1a highly pathogenic avian influenza (HPAI) H5N1 viruses. Additional LPAIs were found in both LPM (H4N6) and Tanguar Haor wetlands (H7N7). Genetic analyses of these LPAIs strongly suggested long-distance movement of viruses along the Central Asian migratory bird flyway. We also detected a novel clade 2.3.4.4b H5N1 virus from ducks in free-range farms in Tanguar Haor that was similar to viruses first detected in October 2020 in The Netherlands but with a different PB2. Identification of clade 2.3.4.4b HPAI H5N1 viruses in Tanguar Haor provides continued support of the role of migratory birds in transboundary movement of influenza A viruses (IAV), including HPAI viruses. Domestic ducks in free range farm in wetland areas, like Tangua Haor, serve as a conduit for the introduction of LPAI and HPAI viruses into Bangladesh. Clade 2.3.4.4b viruses have dominated in many regions of the world since mid-2021, and it remains to be seen if these viruses will replace the endemic clade 2.3.2.1a H5N1 viruses in Bangladesh.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Subtipo H7N7 del Virus de la Influenza A , Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar , Animales , Gripe Aviar/epidemiología , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H9N2 del Virus de la Influenza A/genética , Bangladesh/epidemiología , Aves , Patos , Aves de Corral , Genotipo , Filogenia
17.
bioRxiv ; 2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37162920

RESUMEN

Highly pathogenic avian influenza viruses from H5 clade 2.3.4.4b are circulating at unprecedently high levels in wild and domestic birds and have the potential to adapt to humans. We generated an mRNA lipid nanoparticle (LNP) vaccine encoding the hemagglutinin (HA) glycoprotein from a clade 2.3.4.4b H5 isolate. We show that the vaccine is immunogenic in mice and ferrets and prevents morbidity and mortality of ferrets following 2.3.4.4b H5N1 challenge.

18.
Res Sq ; 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36824718

RESUMEN

While SARS-CoV-2 has sporadically infected a wide range of animal species worldwide1, the virus has been repeatedly and frequently detected in white-tailed deer in North America2â€"7. The zoonotic origins of this pandemic virus highlight the need to fill the vast gaps in our knowledge of SARS-CoV-2 ecology and evolution in non-human hosts. Here, we detected SARS-CoV-2 was introduced from humans into white-tailed deer more than 30 times in Ohio, USA during November 2021-March 2022. Subsequently, deer-to-deer transmission persisted for 2-8 months, which disseminated across hundreds of kilometers. We discovered that alpha and delta variants evolved in white-tailed deer at three-times the rate observed in humans. Newly developed Bayesian phylogenetic methods quantified how SARS-CoV-2 evolution is not only faster in white-tailed deer but driven by different mutational biases and selection pressures. White-tailed deer are not just short-term recipients of human viral diversity but serve as reservoirs for alpha and other variants to evolve in new directions after going extinct in humans. The long-term effect of this accelerated evolutionary rate remains to be seen as no critical phenotypic changes were observed in our animal model experiments using viruses isolated from white-tailed deer. Still, SARS-CoV-2 viruses have transmitted in white-tailed deer populations for a relatively short duration, and the risk of future changes may have serious consequences for humans and livestock.

19.
Nat Commun ; 14(1): 5105, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37640694

RESUMEN

The zoonotic origin of the COVID-19 pandemic virus highlights the need to fill the vast gaps in our knowledge of SARS-CoV-2 ecology and evolution in non-human hosts. Here, we detected that SARS-CoV-2 was introduced from humans into white-tailed deer more than 30 times in Ohio, USA during November 2021-March 2022. Subsequently, deer-to-deer transmission persisted for 2-8 months, disseminating across hundreds of kilometers. Newly developed Bayesian phylogenetic methods quantified how SARS-CoV-2 evolution is not only three-times faster in white-tailed deer compared to the rate observed in humans but also driven by different mutational biases and selection pressures. The long-term effect of this accelerated evolutionary rate remains to be seen as no critical phenotypic changes were observed in our animal models using white-tailed deer origin viruses. Still, SARS-CoV-2 has transmitted in white-tailed deer populations for a relatively short duration, and the risk of future changes may have serious consequences for humans and livestock.


Asunto(s)
COVID-19 , Ciervos , Animales , Humanos , SARS-CoV-2/genética , COVID-19/veterinaria , Teorema de Bayes , Pandemias , Filogenia
20.
Emerg Infect Dis ; 18(10): 1596-602, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23017273

RESUMEN

On March 15, 2010, a highly pathogenic avian influenza virus was isolated from the carcass of a common buzzard (Buteo buteo) in Bulgaria. Phylogenetic analyses of the virus showed a close genetic relationship with influenza virus A (H5N1) clade 2.3.2.1 viruses isolated from wild birds in the Tyva Republic and Mongolia during 2009-2010. Designated A/common buzzard/Bulgaria/38WB/2010, this strain was highly pathogenic in chickens but had low pathogenicity in mice and ferrets and no molecular markers of increased pathogenicity in mammals. The establishment of clade 2.3.2.1 highly pathogenic avian influenza viruses of the H5N1 subtype in wild birds in Europe would increase the likelihood of health threats to humans and poultry in the region.


Asunto(s)
Animales Salvajes/virología , Falconiformes/virología , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Animales , Enfermedades de las Aves/transmisión , Enfermedades de las Aves/virología , Aves/virología , Bulgaria , Pollos/virología , Hurones/virología , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/transmisión , Gripe Aviar/virología , Ratones , Datos de Secuencia Molecular , Enfermedades de las Aves de Corral/virología , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda