Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Oecologia ; 199(3): 579-587, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35804249

RESUMEN

One of the main aspects associated with the diversity in animal colour is the variation in melanization levels. In ectotherms, melanism can be advantageous in aiding thermoregulation through heat absorption. Darker bodies may also serve as a shield from harmful UV-B radiation. Melanism may also confer protection against parasites and predators through improving immunity responses and camouflage in regions with high precipitation, with complex and shaded vegetations and greater diversity of pathogens and parasites. We studied melanism evolution in the globally distributed ant genus Pheidole under the pressures of temperature, UV-B radiation and precipitation, while considering the effects of body size and nest habit, traits that are commonly overlooked. More importantly, we account for worker caste polymorphism, which is marked by distinct roles and behaviours. We revealed for the first time distinct evolutionary trajectories for each worker subcaste. As expected, major workers from species inhabiting locations with lower temperatures and higher precipitation tend to be more melanised. Curiously, we show a slight trend where minor workers of larger species also tend to have darker bodies when inhabiting regions with higher precipitation. Lastly, we did not find evidence for the effects of UV-B radiation and nest habit in the lightness variation of workers. Our paper explores the evolution of ant melanization considering a marked ant worker polymorphism and a wide range of ecological factors. We discuss our findings under the light of the Thermal Melanism Hypothesis, the Photoprotection Hypothesis and the Gloger's Rule.


Asunto(s)
Hormigas , Melanosis , Animales , Tamaño Corporal , Clima , Temperatura
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda