Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Mol Cell ; 83(3): 324-329, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36736306

RESUMEN

Pathogenic repeat sequences underlie several human disorders, including amyotrophic lateral sclerosis, Huntington's disease, and myotonic dystrophy. Here, we speak to several researchers about how repeat sequences have been implicated in affecting all aspects of the Central Dogma of molecular biology through their effects on DNA, RNA, and protein.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedad de Huntington , Distrofia Miotónica , Humanos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Proteínas/genética , Enfermedad de Huntington/genética , ARN/genética , Distrofia Miotónica/genética , Expansión de Repetición de Trinucleótido/genética
2.
Nature ; 586(7828): 292-298, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32999459

RESUMEN

The RecQ DNA helicase WRN is a synthetic lethal target for cancer cells with microsatellite instability (MSI), a form of genetic hypermutability that arises from impaired mismatch repair1-4. Depletion of WRN induces widespread DNA double-strand breaks in MSI cells, leading to cell cycle arrest and/or apoptosis. However, the mechanism by which WRN protects MSI-associated cancers from double-strand breaks remains unclear. Here we show that TA-dinucleotide repeats are highly unstable in MSI cells and undergo large-scale expansions, distinct from previously described insertion or deletion mutations of a few nucleotides5. Expanded TA repeats form non-B DNA secondary structures that stall replication forks, activate the ATR checkpoint kinase, and require unwinding by the WRN helicase. In the absence of WRN, the expanded TA-dinucleotide repeats are susceptible to cleavage by the MUS81 nuclease, leading to massive chromosome shattering. These findings identify a distinct biomarker that underlies the synthetic lethal dependence on WRN, and support the development of therapeutic agents that target WRN for MSI-associated cancers.


Asunto(s)
Roturas del ADN de Doble Cadena , Expansión de las Repeticiones de ADN/genética , Repeticiones de Dinucleótido/genética , Neoplasias/genética , Helicasa del Síndrome de Werner/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular Tumoral , Cromosomas Humanos/genética , Cromosomas Humanos/metabolismo , Cromotripsis , División del ADN , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Endonucleasas/metabolismo , Inestabilidad Genómica , Humanos , Recombinasas/metabolismo
3.
PLoS Biol ; 20(12): e3001940, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36574440

RESUMEN

Expansion of structure-forming CAG/CTG repetitive sequences is the cause of several neurodegenerative disorders and deletion of repeats is a potential therapeutic strategy. Transcription-associated mechanisms are known to cause CAG repeat instability. In this study, we discovered that Thp2, an RNA export factor and member of the THO (suppressors of transcriptional defects of hpr1Δ by overexpression) complex, and Trf4, a key component of the TRAMP (Trf4/5-Air1/2-Mtr4 polyadenylation) complex involved in nuclear RNA polyadenylation and degradation, are necessary to prevent CAG fragility and repeat contractions in a Saccharomyces cerevisiae model system. Depletion of both Thp2 and Trf4 proteins causes a highly synergistic increase in CAG repeat fragility, indicating a complementary role of the THO and TRAMP complexes in preventing genome instability. Loss of either Thp2 or Trf4 causes an increase in RNA polymerase stalling at the CAG repeats and other genomic loci, as well as genome-wide transcription-replication conflicts (TRCs), implicating TRCs as a cause of CAG fragility and instability in their absence. Analysis of the effect of RNase H1 overexpression on CAG fragility, RNAPII stalling, and TRCs suggests that RNAPII stalling with associated R-loops are the main cause of CAG fragility in the thp2Δ mutants. In contrast, CAG fragility and TRCs in the trf4Δ mutant can be compensated for by RPA overexpression, suggesting that excess unprocessed RNA in TRAMP4 mutants leads to reduced RPA availability and high levels of TRCs. Our results show the importance of RNA surveillance pathways in preventing RNAPII stalling, TRCs, and DNA breaks, and show that RNA export and RNA decay factors work collaboratively to maintain genome stability.


Asunto(s)
ARN , Proteínas de Saccharomyces cerevisiae , ARN/genética , ARN/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , ARN Polimerasa II/genética , Roturas del ADN , Estabilidad del ARN
4.
EMBO J ; 39(18): e106305, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32790898

RESUMEN

How the replisome senses and deals with DNA secondary structures has been a mystery. A new study from the Sale and Pellegrini laboratories finds that the Timeless protein has a G-quadruplex binding domain that works together with the DDX11 helicase to facilitate replication of G4 DNA structures.


Asunto(s)
Replicación del ADN , G-Cuádruplex , ADN/genética , ADN Helicasas/genética , ADN Helicasas/metabolismo
5.
PLoS Genet ; 17(10): e1009863, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34673780

RESUMEN

Disease-associated trinucleotide repeats form secondary DNA structures that interfere with replication and repair. Replication has been implicated as a mechanism that can cause repeat expansions and contractions. However, because structure-forming repeats are also replication barriers, it has been unclear whether the instability occurs due to slippage during normal replication progression through the repeat, slippage or misalignment at a replication stall caused by the repeat, or during subsequent replication of the repeat by a restarted fork that has altered properties. In this study, we have specifically addressed the fidelity of a restarted fork as it replicates through a CAG/CTG repeat tract and its effect on repeat instability. To do this, we used a well-characterized site-specific replication fork barrier (RFB) system in fission yeast that creates an inducible and highly efficient stall that is known to restart by recombination-dependent replication (RDR), in combination with long CAG repeat tracts inserted at various distances and orientations with respect to the RFB. We find that replication by the restarted fork exhibits low fidelity through repeat sequences placed 2-7 kb from the RFB, exhibiting elevated levels of Rad52- and Rad8ScRad5/HsHLTF-dependent instability. CAG expansions and contractions are not elevated to the same degree when the tract is just in front or behind the barrier, suggesting that the long-traveling Polδ-Polδ restarted fork, rather than fork reversal or initial D-loop synthesis through the repeat during stalling and restart, is the greatest source of repeat instability. The switch in replication direction that occurs due to replication from a converging fork while the stalled fork is held at the barrier is also a significant contributor to the repeat instability profile. Our results shed light on a long-standing question of how fork stalling and RDR contribute to expansions and contractions of structure-forming trinucleotide repeats, and reveal that tolerance to replication stress by fork restart comes at the cost of increased instability of repetitive sequences.


Asunto(s)
Replicación del ADN/genética , ADN/genética , Expansión de Repetición de Trinucleótido/genética , Repeticiones de Trinucleótidos/genética , Reparación del ADN/genética , Inestabilidad Genómica/genética , Schizosaccharomyces/genética
6.
Genes Dev ; 29(10): 1006-17, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25940904

RESUMEN

Secondary structure-forming DNA sequences such as CAG repeats interfere with replication and repair, provoking fork stalling, chromosome fragility, and recombination. In budding yeast, we found that expanded CAG repeats are more likely than unexpanded repeats to localize to the nuclear periphery. This positioning is transient, occurs in late S phase, requires replication, and is associated with decreased subnuclear mobility of the locus. In contrast to persistent double-stranded breaks, expanded CAG repeats at the nuclear envelope associate with pores but not with the inner nuclear membrane protein Mps3. Relocation requires Nup84 and the Slx5/8 SUMO-dependent ubiquitin ligase but not Rad51, Mec1, or Tel1. Importantly, the presence of the Nup84 pore subcomplex and Slx5/8 suppresses CAG repeat fragility and instability. Repeat instability in nup84, slx5, or slx8 mutant cells arises through aberrant homologous recombination and is distinct from instability arising from the loss of ligase 4-dependent end-joining. Genetic and physical analysis of Rad52 sumoylation and binding at the CAG tract suggests that Slx5/8 targets sumoylated Rad52 for degradation at the pore to facilitate recovery from acute replication stress by promoting replication fork restart. We thereby confirmed that the relocation of damage to nuclear pores plays an important role in a naturally occurring repair process.


Asunto(s)
Reparación del ADN/genética , Poro Nuclear/metabolismo , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Repeticiones de Trinucleótidos/genética , Transporte de Proteínas , Fase S , Saccharomyces cerevisiae/genética , Sumoilación
7.
Mol Cell ; 55(6): 818-828, 2014 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-25132173

RESUMEN

CAG/CTG trinucleotide repeats are unstable, fragile sequences that strongly position nucleosomes, but little is known about chromatin modifications required to prevent genomic instability at these or other structure-forming sequences. We discovered that regulated histone H4 acetylation is required to maintain CAG repeat stability and promote gap-induced sister chromatid recombination. CAG expansions in the absence of H4 HATs NuA4 and Hat1 and HDACs Sir2, Hos2, and Hst1 depended on Rad52, Rad57, and Rad5 and were therefore arising through homology-mediated postreplication repair (PRR) events. H4K12 and H4K16 acetylation were required to prevent Rad5-dependent CAG repeat expansions, and H4K16 acetylation was enriched at CAG repeats during S phase. Genetic experiments placed the RSC chromatin remodeler in the same PRR pathway, and Rsc2 recruitment was coincident with H4K16 acetylation. Here we have utilized a repetitive DNA sequence that induces endogenous DNA damage to identify histone modifications that regulate recombination efficiency and fidelity during postreplication gap repair.


Asunto(s)
Histona Acetiltransferasas/metabolismo , Histona Desacetilasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Intercambio de Cromátides Hermanas , Repeticiones de Trinucleótidos/genética , Acetilación , Ensamble y Desensamble de Cromatina , Cromosomas Fúngicos , Daño del ADN , Reparación del ADN , Replicación del ADN , Genoma Fúngico , Inestabilidad Genómica , Histona Acetiltransferasas/genética , Histona Desacetilasas/genética , Histonas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
8.
J Biol Chem ; 295(40): 13902-13913, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-32763971

RESUMEN

Trinucleotide repeat (TNR) expansion and deletion are responsible for over 40 neurodegenerative diseases and associated with cancer. TNRs can undergo somatic instability that is mediated by DNA damage and repair and gene transcription. Recent studies have pointed toward a role for R-loops in causing TNR expansion and deletion, and it has been shown that base excision repair (BER) can result in CAG repeat deletion from R-loops in yeast. However, it remains unknown how BER in R-loops can mediate TNR instability. In this study, using biochemical approaches, we examined BER enzymatic activities and their influence on TNR R-loops. We found that AP endonuclease 1 incised an abasic site on the nontemplate strand of a TNR R-loop, creating a double-flap intermediate containing an RNA:DNA hybrid that subsequently inhibited polymerase ß (pol ß) synthesis of TNRs. This stimulated flap endonuclease 1 (FEN1) cleavage of TNRs engaged in an R-loop. Moreover, we showed that FEN1 also efficiently cleaved the RNA strand, facilitating pol ß loop/hairpin bypass synthesis and the resolution of TNR R-loops through BER. Consequently, this resulted in fewer TNRs synthesized by pol ß than those removed by FEN1, thereby leading to repeat deletion. Our results indicate that TNR R-loops preferentially lead to repeat deletion during BER by disrupting the balance between the addition and removal of TNRs. Our discoveries open a new avenue for the treatment and prevention of repeat expansion diseases and cancer.


Asunto(s)
ADN Polimerasa beta/química , Reparación del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa/química , Endonucleasas de ADN Solapado/química , Estructuras R-Loop , Repeticiones de Trinucleótidos , Humanos
9.
Nucleic Acids Res ; 47(2): 794-805, 2019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30476303

RESUMEN

Fork stabilization at DNA impediments is key to maintaining replication fork integrity and preventing chromosome breaks. Mrc1 and Tof1 are two known stabilizers that travel with the replication fork. In addition to a structural role, Mrc1 has a DNA damage checkpoint function. Using a yeast model system, we analyzed the role of Mrc1 and Tof1 at expanded CAG repeats of medium and long lengths, which are known to stall replication forks and cause trinucleotide expansion diseases such as Huntington's disease and myotonic dystrophy. We demonstrate that the fork stabilizer but not the checkpoint activation function of Mrc1 is key for preventing DNA breakage and death of cells containing expanded CAG tracts. In contrast, both Mrc1 functions are important in preventing repeat length instability. Mrc1 has a general fork protector role that is evident at forks traversing both repetitive and non-repetitive DNA, though it becomes crucial at long CAG repeat lengths. In contrast, the role of Tof1 in preventing fork breakage is specific to long CAG tracts of 85 or more repeats. Our results indicate that long CAG repeats have a particular need for Tof1 and highlight the importance of fork stabilizers in maintaining fork integrity during replication of structure-forming repeats.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Fragilidad Cromosómica , Proteínas de Unión al ADN/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Repeticiones de Trinucleótidos , Proteínas de Ciclo Celular/genética , Replicación del ADN , Proteínas de Unión al ADN/genética , Eliminación de Gen , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética
10.
Proc Natl Acad Sci U S A ; 114(40): E8392-E8401, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28923949

RESUMEN

CAG/CTG repeats are structure-forming repetitive DNA sequences, and expansion beyond a threshold of ∼35 CAG repeats is the cause of several human diseases. Expanded CAG repeats are prone to breakage, and repair of the breaks can cause repeat contractions and expansions. In this study, we found that cotranscriptional R-loops formed at a CAG-70 repeat inserted into a yeast chromosome. R-loops were further elevated upon deletion of yeast RNaseH genes and caused repeat fragility. A significant increase in CAG repeat contractions was also observed, consistent with previous human cell studies. Deletion of yeast cytosine deaminase Fcy1 significantly decreased the rate of CAG repeat fragility and contractions in the rnh1Δrnh201Δ background, indicating that Fcy1-mediated deamination is one cause of breakage and contractions in the presence of R-loops. Furthermore, base excision repair (BER) is responsible for causing CAG repeat contractions downstream of Fcy1, but not fragility. The Rad1/XPF and Rad2/XPG nucleases were also important in protecting against contractions, but through BER rather than nucleotide excision repair. Surprisingly, the MutLγ (Mlh1/Mlh3) endonuclease caused R-loop-dependent CAG fragility, defining an alternative function for this complex. These findings provide evidence that breakage at expanded CAG repeats occurs due to R-loop formation and reveal two mechanisms for CAG repeat instability: one mediated by cytosine deamination of DNA engaged in R-loops and the other by MutLγ cleavage. Since disease-causing CAG repeats occur in transcribed regions, our results suggest that R-loop-mediated fragility is a mechanism that could cause DNA damage and repeat-length changes in human cells.


Asunto(s)
Citosina/química , Reparación del ADN , ADN de Hongos/química , Inestabilidad Genómica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Repeticiones de Trinucleótidos , ADN de Hongos/genética , Desaminación , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética
11.
Genes Chromosomes Cancer ; 58(5): 270-283, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30536896

RESUMEN

Alternative non-B form DNA structures, also called secondary structures, can form in certain DNA sequences under conditions that produce single-stranded DNA, such as during replication, transcription, and repair. Direct links between secondary structure formation, replication fork stalling, and genomic instability have been found for many repeated DNA sequences that cause disease when they expand. Common fragile sites (CFSs) are known to be AT-rich and break under replication stress, yet the molecular basis for their fragility is still being investigated. Over the past several years, new evidence has linked both the formation of secondary structures and transcription to fork stalling and fragility of CFSs. How these two events may synergize to cause fragility and the role of nuclease cleavage at secondary structures in rare and CFSs are discussed here. We also highlight evidence for a new hypothesis that secondary structures at CFSs not only initiate fragility but also inhibit healing, resulting in their characteristic appearance.


Asunto(s)
Sitios Frágiles del Cromosoma , Fragilidad Cromosómica , Replicación del ADN , ADN/genética , Animales , ADN/química , Humanos
12.
Nucleic Acids Res ; 45(8): 4519-4531, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28175398

RESUMEN

Trinucleotide repeats are a source of genome instability, causing replication fork stalling, chromosome fragility, and impaired repair. Specialized helicases play an important role in unwinding DNA structures to maintain genome stability. The Srs2 helicase unwinds DNA hairpins, facilitates replication, and prevents repeat instability and fragility. However, since Srs2 is a multifunctional protein with helicase activity and the ability to displace Rad51 recombinase, it was unclear which functions were required for its various protective roles. Here, using SRS2 separation-of-function alleles, we show that in the absence of Srs2 recruitment to PCNA or in helicase-deficient mutants, breakage at a CAG/CTG repeat increases. We conclude that Srs2 interaction with PCNA allows the helicase activity to unwind fork-blocking CAG/CTG hairpin structures to prevent breaks. Independently of PCNA binding, Srs2 also displaces Rad51 from nascent strands to prevent recombination-dependent repeat expansions and contractions. By 2D gel electrophoresis, we detect two different kinds of structured intermediates or joint molecules (JMs). Some JMs are Rad51-independent and exhibit properties of reversed forks, including being processed by the Exo1 nuclease. In addition, in a helicase-deficient mutant, Rad51-dependent JMs are detected, probably corresponding to recombination between sisters. These results clarify the many roles of Srs2 in facilitating replication through fork-blocking hairpin lesions.


Asunto(s)
ADN Helicasas/genética , Replicación del ADN , ADN de Hongos/genética , Genoma Fúngico , Antígeno Nuclear de Célula en Proliferación/genética , Recombinasa Rad51/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Alelos , Fragilidad Cromosómica , ADN Helicasas/metabolismo , ADN de Hongos/metabolismo , Electroforesis en Gel Bidimensional , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Inestabilidad Genómica , Secuencias Invertidas Repetidas , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica , Recombinasa Rad51/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Repeticiones de Trinucleótidos
13.
Curr Genet ; 64(4): 789-794, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29327083

RESUMEN

R-loops form when transcribed RNA remains bound to its DNA template to form a stable RNA:DNA hybrid. Stable R-loops form when the RNA is purine-rich, and are further stabilized by DNA secondary structures on the non-template strand. Interestingly, many expandable and disease-causing repeat sequences form stable R-loops, and R-loops can contribute to repeat instability. Repeat expansions are responsible for multiple neurodegenerative diseases, including Huntington's disease, myotonic dystrophy, and several types of ataxias. Recently, it was found that R-loops at an expanded CAG/CTG repeat tract cause DNA breaks as well as repeat instability (Su and Freudenreich, Proc Natl Acad Sci USA 114, E8392-E8401, 2017). Two factors were identified as causing R-loop-dependent breaks at CAG/CTG tracts: deamination of cytosines and the MutLγ (Mlh1-Mlh3) endonuclease, defining two new mechanisms for how R-loops can generate DNA breaks (Su and Freudenreich, Proc Natl Acad Sci USA 114, E8392-E8401, 2017). Following R-loop-dependent nicking, base excision repair resulted in repeat instability. These results have implications for human repeat expansion diseases and provide a paradigm for how RNA:DNA hybrids can cause genome instability at structure-forming DNA sequences. This perspective summarizes mechanisms of R-loop-induced fragility at G-rich repeats and new links between DNA breaks and repeat instability.


Asunto(s)
ADN/genética , Inestabilidad Genómica/genética , Hibridación de Ácido Nucleico/genética , ARN/genética , Reparación del ADN/genética , Expansión de las Repeticiones de ADN/genética , Replicación del ADN/genética , Humanos , Saccharomyces cerevisiae/genética
14.
Crit Rev Biochem Mol Biol ; 50(2): 142-67, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25608779

RESUMEN

The expansion of repeated sequences is the cause of over 30 inherited genetic diseases, including Huntington disease, myotonic dystrophy (types 1 and 2), fragile X syndrome, many spinocerebellar ataxias, and some cases of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Repeat expansions are dynamic, and disease inheritance and progression are influenced by the size and the rate of expansion. Thus, an understanding of the various cellular mechanisms that cooperate to control or promote repeat expansions is of interest to human health. In addition, the study of repeat expansion and contraction mechanisms has provided insight into how repair pathways operate in the context of structure-forming DNA, as well as insights into non-canonical roles for repair proteins. Here we review the mechanisms of repeat instability, with a special emphasis on the knowledge gained from the various model systems that have been developed to study this topic. We cover the repair pathways and proteins that operate to maintain genome stability, or in some cases cause instability, and the cross-talk and interactions between them.


Asunto(s)
Reparación del ADN/genética , ADN/genética , Conformación de Ácido Nucleico , Expansión de Repetición de Trinucleótido/genética , Fragilidad Cromosómica/genética , ADN/química , Daño del ADN , Replicación del ADN/genética , Enfermedades Genéticas Congénitas/clasificación , Enfermedades Genéticas Congénitas/etiología , Inestabilidad Genómica , Humanos , Recombinación Genética
15.
FEMS Yeast Res ; 16(8)2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27799300

RESUMEN

Early screens in yeast for mutations exhibiting sensitivity to DNA damage identified nuclear pore components, but their role in DNA repair was not well understood. Over the last decade, studies have revealed that several types of persistent DNA lesions relocate to either the nuclear pore complex (NPC) or nuclear envelope (NE). Of these two sites, the nuclear pore appears to be crucial for DNA repair of persistent double-strand breaks, eroded telomeres and sites of fork collapse at expanded CAG repeats. Using a combination of cell biological imaging techniques and yeast genetic assays for DNA repair, researchers have begun to understand both the how and why of lesion relocation to the NPC. Here we review the types of lesions that relocate to the NPC, mediators of relocation and the functional consequences of relocation understood to date. The emerging theme is that relocation to the NPC regulates recombination to influence repair pathway choice and provide a rescue mechanism for lesions or DNA structures that are resistant to repair.


Asunto(s)
Daño del ADN , ADN de Hongos/genética , Poro Nuclear/genética , Saccharomyces cerevisiae/genética , Núcleo Celular/genética , Reparación del ADN , Humanos , Recombinación Genética
16.
Nucleic Acids Res ; 40(3): 1091-105, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21984413

RESUMEN

DNA sequences that form secondary structures or bind protein complexes are known barriers to replication and potential inducers of genome instability. In order to determine which helicases facilitate DNA replication across these barriers, we analyzed fork progression through them in wild-type and mutant yeast cells, using 2-dimensional gel-electrophoretic analysis of the replication intermediates. We show that the Srs2 protein facilitates replication of hairpin-forming CGG/CCG repeats and prevents chromosome fragility at the repeat, whereas it does not affect replication of G-quadruplex forming sequences or a protein-bound repeat. Srs2 helicase activity is required for hairpin unwinding and fork progression. Also, the PCNA binding domain of Srs2 is required for its in vivo role of replication through hairpins. In contrast, the absence of Sgs1 or Pif1 helicases did not inhibit replication through structural barriers, though Pif1 did facilitate replication of a telomeric protein barrier. Interestingly, replication through a protein barrier but not a DNA structure barrier was modulated by nucleotide pool levels, illuminating a different mechanism by which cells can regulate fork progression through protein-mediated stall sites. Our analyses reveal fundamental differences in the replication of DNA structural versus protein barriers, with Srs2 helicase activity exclusively required for fork progression through hairpin structures.


Asunto(s)
ADN Helicasas/fisiología , Replicación del ADN , Rotura Cromosómica , ADN/química , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , G-Cuádruplex , Conformación de Ácido Nucleico , Antígeno Nuclear de Célula en Proliferación/metabolismo , RecQ Helicasas/fisiología , Secuencias Repetitivas de Ácidos Nucleicos , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Telómero/metabolismo
17.
PLoS Genet ; 7(3): e1001339, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21437275

RESUMEN

Repetitive DNA elements are mutational hotspots in the genome, and their instability is linked to various neurological disorders and cancers. Although it is known that expanded trinucleotide repeats can interfere with DNA replication and repair, the cellular response to these events has not been characterized. Here, we demonstrate that an expanded CAG/CTG repeat elicits a DNA damage checkpoint response in budding yeast. Using microcolony and single cell pedigree analysis, we found that cells carrying an expanded CAG repeat frequently experience protracted cell division cycles, persistent arrests, and morphological abnormalities. These phenotypes were further exacerbated by mutations in DSB repair pathways, including homologous recombination and end joining, implicating a DNA damage response. Cell cycle analysis confirmed repeat-dependent S phase delays and G2/M arrests. Furthermore, we demonstrate that the above phenotypes are due to the activation of the DNA damage checkpoint, since expanded CAG repeats induced the phosphorylation of the Rad53 checkpoint kinase in a rad52Δ recombination deficient mutant. Interestingly, cells mutated for the MRX complex (Mre11-Rad50-Xrs2), a central component of DSB repair which is required to repair breaks at CAG repeats, failed to elicit repeat-specific arrests, morphological defects, or Rad53 phosphorylation. We therefore conclude that damage at expanded CAG/CTG repeats is likely sensed by the MRX complex, leading to a checkpoint response. Finally, we show that repeat expansions preferentially occur in cells experiencing growth delays. Activation of DNA damage checkpoints in repeat-containing cells could contribute to the tissue degeneration observed in trinucleotide repeat expansion diseases.


Asunto(s)
Ciclo Celular/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Expansión de Repetición de Trinucleótido/genética , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Quinasa de Punto de Control 2 , Daño del ADN/genética , Reparación del ADN/genética , Replicación del ADN/genética , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/metabolismo , Hidroxiurea/farmacología , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Fenotipo , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
PLoS Genet ; 7(2): e1001298, 2011 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-21347277

RESUMEN

Expansion of DNA trinucleotide repeats causes at least 15 hereditary neurological diseases, and these repeats also undergo contraction and fragility. Current models to explain this genetic instability invoke erroneous DNA repair or aberrant replication. Here we show that CAG/CTG tracts are stabilized in Saccharomyces cerevisiae by the alternative clamp loader/unloader Ctf18-Dcc1-Ctf8-RFC complex (Ctf18-RFC). Mutants in Ctf18-RFC increased all three forms of triplet repeat instability--expansions, contractions, and fragility--with effect over a wide range of allele lengths from 20-155 repeats. Ctf18-RFC predominated among the three alternative clamp loaders, with mutants in Elg1-RFC or Rad24-RFC having less effect on trinucleotide repeats. Surprisingly, chl1, scc1-73, or scc2-4 mutants defective in sister chromatid cohesion (SCC) did not increase instability, suggesting that Ctf18-RFC protects triplet repeats independently of SCC. Instead, three results suggest novel roles for Ctf18-RFC in facilitating genomic stability. First, genetic instability in mutants of Ctf18-RFC was exacerbated by simultaneous deletion of the fork stabilizer Mrc1, but suppressed by deletion of the repair protein Rad52. Second, single-cell analysis showed that mutants in Ctf18-RFC had a slowed S phase and a striking G2/M accumulation, often with an abnormal multi-budded morphology. Third, ctf18 cells exhibit increased Rad52 foci in S phase, often persisting into G2, indicative of high levels of DNA damage. The presence of a repeat tract greatly magnified the ctf18 phenotypes. Together these results indicate that Ctf18-RFC has additional important functions in preserving genome stability, besides its role in SCC, which we propose include lesion bypass by replication forks and post-replication repair.


Asunto(s)
Inestabilidad Genómica/genética , Proteína de Replicación C/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Expansión de Repetición de Trinucleótido/genética , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/genética , Cromátides/metabolismo , Segregación Cromosómica , Daño del ADN , Reparación del ADN , Péptidos y Proteínas de Señalización Intracelular/genética , Mutación/genética , Proteína de Replicación C/genética , Proteínas de Saccharomyces cerevisiae/genética
19.
Proc Natl Acad Sci U S A ; 108(7): 2843-8, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21282659

RESUMEN

Spinocerebellar ataxia 10 (SCA10) is an autosomal dominant disease caused by large-scale expansions of the (ATTCT)(n) repeat within an intron of the human ATXN10 gene. In contrast to other expandable repeats, this pentanucleotide repeat does not form stable intra- or interstranded DNA structures, being a DNA unwinding element instead. We analyzed the instability of the (ATTCT)(n) repeat in a yeast experimental system, where its expansions led to inactivation of the URA3 reporter gene. The inactivation was due to a dramatic decrease in the mRNA levels owing to premature transcription termination and RNA polyadenylation at the repeat. The rates of expansions strongly increased with the repeat's length, mimicking genetic anticipation in human pedigrees. A first round of genetic analysis showed that a functional TOF1 gene precludes, whereas a functional RAD5 gene promotes, expansions of the (ATTCT)(n) repeat. We hypothesize that repeat expansions could occur upon fortuitous template switching during DNA replication. The rate of repeat contractions was elevated in the Tof1 knockout strain, but it was not affected by the RAD5 gene. Supporting the notion of replication irregularities, we found that (ATTCT)(n) repeats also cause length-dependent chromosomal fragility in yeast. Repeat-mediated fragility was also affected by the Tof1 and Rad5 proteins, being reduced in their absence.


Asunto(s)
Expansión de las Repeticiones de ADN/genética , ADN/metabolismo , Repeticiones de Microsatélite/genética , Proteínas del Tejido Nervioso/genética , Ataxina-10 , Secuencia de Bases , Brasil , Clonación Molecular , ADN/genética , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Silenciador del Gen , Genes Reporteros/genética , Humanos , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Transformación Genética
20.
bioRxiv ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38948692

RESUMEN

Hairpin forming expanded CAG/CTG repeats pose significant challenges to DNA replication which can lead to replication fork collapse. Long CAG/CTG repeat tracts relocate to the nuclear pore complex to maintain their integrity. Forks impeded by DNA structures are known to activate the DNA damage checkpoint, thus we asked whether checkpoint proteins play a role in relocation of collapsed forks to the nuclear periphery in S. cerevisiae . We show that relocation of a (CAG/CTG) 130 tract is dependent on activation of the Mrc1/Rad53 replication checkpoint. Further, checkpoint-mediated phosphorylation of the kinetochore protein Cep3 is required for relocation, implicating detachment of the centromere from the spindle pole body. Activation of this pathway leads to DNA damage-induced microtubule recruitment to the repeat. These data suggest a role for the DNA replication checkpoint in facilitating movement of collapsed replication forks to the nuclear periphery by centromere release and microtubule-directed motion. Highlights: The DNA damage checkpoint is needed for relocation of a structure-forming CAG repeat tract to the nuclear pore complexThe importance of Mrc1 (hClaspin) implicates fork uncoupling as the initial checkpoint signalPhosphorylation of the Cep3 kinetochore protein by Dun1 kinase modulates centromere release, which is critical for collapsed fork repositioningDamage-inducible nuclear microtubules colocalize with the CAG repeat locus and are required for relocalizationEstablishes a new role for the DNA replication and DNA damage checkpoint response to trigger repositioning of collapsed forks within the nucleus.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda