Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Oncogene ; 41(1): 112-124, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34703030

RESUMEN

Intratumoral heterogeneity has been described for various tumor types and models of human cancer, and can have profound effects on tumor progression and drug resistance. This study describes an in-depth analysis of molecular and functional heterogeneity among subclonal populations (SCPs) derived from a single triple-negative breast cancer cell line, including copy number analysis, whole-exome and RNA sequencing, proteome analysis, and barcode analysis of clonal dynamics, as well as functional assays. The SCPs were found to have multiple unique genetic alterations and displayed significant variation in anchorage independent growth and tumor forming ability. Analyses of clonal dynamics in SCP mixtures using DNA barcode technology revealed selection for distinct clonal populations in different in vitro and in vivo environmental contexts, demonstrating that in vitro propagation of cancer cell lines using different culture conditions can contribute to the establishment of unique strains. These analyses also revealed strong enrichment of a single SCP during the development of xenograft tumors in immune-compromised mice. This SCP displayed attenuated interferon signaling in vivo and reduced sensitivity to the antiproliferative effects of type I interferons. Reduction in interferon signaling was found to provide a selective advantage within the xenograft microenvironment specifically. In concordance with the previously described role of interferon signaling as tumor suppressor, these findings suggest that similar selective pressures may be operative in human cancer and patient-derived xenograft models.


Asunto(s)
Heterogeneidad Genética , Neoplasias de la Mama Triple Negativas/genética , Microambiente Tumoral/genética , Animales , Humanos , Ratones , Mutación , Neoplasias de la Mama Triple Negativas/patología
2.
Biol Open ; 10(1)2021 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-33431410

RESUMEN

Bisphenol-A (BPA) is a ubiquitous precursor of polycarbonate plastics that is found in the blood and serum of >92% of Americans. While BPA has been well documented to act as a weak estrogen receptor (ER) agonist, its effects on cellular stress are unclear. Here, we demonstrate that high-dose BPA causes stress granules (SGs) in human cells. A common estrogen derivative, ß-estradiol, does not trigger SGs, indicating the mechanism of SG induction is not via the ER pathway. We also tested other structurally related environmental contaminants including the common BPA substitutes BPS and BPF, the industrial chemical 4-nonylphenol (4-NP) and structurally related compounds 4-EP and 4-VP, as well as the pesticide 2,4-dichlorophenoxyacetic acid (2,4-D). The variable results from these related compounds suggest that structural homology is not a reliable predictor of the capacity of a compound to cause SGs. Also, we demonstrate that BPA acts primarily through the PERK pathway to generate canonical SGs. Finally, we show that chronic exposure to a low physiologically relevant dose of BPA suppresses SG assembly upon subsequent acute stress. Interestingly, this SG inhibition does not affect phosphorylation of eIF2α or translation inhibition, thus uncoupling the physical assembly of SGs from translational control. Our work identifies additional effects of BPA beyond endocrine disruption that may have consequences for human health.


Asunto(s)
Compuestos de Bencidrilo/metabolismo , Fenoles/metabolismo , Gránulos de Estrés/metabolismo , Estrés Fisiológico , Animales , Compuestos de Bencidrilo/farmacología , Línea Celular , Factor 2 Eucariótico de Iniciación/metabolismo , Regulación de la Expresión Génica , Ratones , Fenoles/farmacología , eIF-2 Quinasa/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda