Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Langmuir ; 32(19): 4848-61, 2016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-27129612

RESUMEN

Coupling a hydrophobic drug onto monoclonal antibodies via lysine residues is a common route to prepare antibody-drug conjugates (ADC), a promising class of biotherapeutics. But a few chemical modifications on protein surface often increase aggregation propensity, without a clear understanding of the aggregation mechanisms at stake (loss of colloidal stability, self-assemblies, denaturation, etc.), and the statistical nature of conjugation introduces polydispersity in the ADC population, which raises questions on whether the whole ADC population becomes unstable. To characterize the average interactions between ADC, we monitored small-angle X-ray scattering in solutions of monoclonal IgG1 human antibody drug conjugate, with average degree of conjugation of 0, 2, or 3 drug molecules per protein. To characterize stability, we studied the kinetics of aggregation at room temperature. The intrinsic Fuchs stability ratio of the ADC was estimated from the variation over time of scattered light intensity and hydrodynamic radius, in buffers of varying pH, and at diverse sucrose (0% or 10%) and NaCl (0 or 100 mM) concentrations. We show that stable ADC stock solutions became unstable upon pH shift, well below the pH of maximum average attraction between IgGs. Data indicate that aggregation can be ascribed to a fraction of ADC population usually representing less than 30 mol % of the sample. In contrast to the case of (monodisperse) monoclonal antibodies, our results suggest that a poor correlation between stability and average interaction parameters should be expected as a corollary of dispersity of ADC conjugation. In practice, the most unstable fraction of the ADC population can be removed by filtration, which affects remarkably the apparent stability of the samples. Finally, the lack of correlation between the kinetic stability and variations of the average inter-ADC interactions is tentatively attributed to the uneven nature of charge distributions and the presence of patches on the drug-modified antibodies.


Asunto(s)
Dispersión Dinámica de Luz , Inmunoconjugados/química , Dispersión del Ángulo Pequeño , Temperatura , Difracción de Rayos X , Tampones (Química) , Coloides , Estabilidad de Medicamentos , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Conformación Proteica , Electricidad Estática
2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(4 Pt 1): 040401, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18999367

RESUMEN

Water-soluble clusters made from 7-nm inorganic nanoparticles have been investigated by small-angle neutron scattering. The internal structure factor of the clusters was derived and exhibited a universal behavior as evidenced by a correlation hole at intermediate wave vectors. Reverse Monte Carlo calculations were performed to adjust the data and provided an accurate description of the clusters in terms of interparticle distance and volume fraction. Additional parameters influencing the microstructure were also investigated, including the nature and thickness of the nanoparticle adlayer.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda