Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nucleic Acids Res ; 45(5): 2714-2723, 2017 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-28034956

RESUMEN

Prokaryotic adaptive immunity relies on the capture of fragments of invader DNA (protospacers) followed by their recombination at a dedicated acceptor DNA locus. This integrative mechanism, called adaptation, needs both Cas1 and Cas2 proteins. Here, we studied in vitro the binding of an Escherichia coli Cas1-Cas2 complex to various protospacer and acceptor DNA molecules. We show that, to form a long-lived ternary complex containing Cas1-Cas2, the acceptor DNA must carry a CRISPR locus, and the protospacer must not contain 3΄-single-stranded overhangs longer than 5 bases. In addition, the acceptor DNA must be supercoiled. Formation of the ternary complex is synergistic, in such that the binding of Cas1-Cas2 to acceptor DNA is reinforced in the presence of a protospacer. Mutagenesis analysis at the CRISPR locus indicates that the presence in the acceptor plasmid of the palindromic motif found in CRISPR repeats drives stable ternary complex formation. Most of the mutations in this motif are deleterious even if they do not prevent cruciform structure formation. The leader sequence of the CRISPR locus is fully dispensable. These DNA binding specificities of the Cas1-Cas2 integrase are likely to play a major role in the recruitment of this enzyme at the CRISPR locus.


Asunto(s)
Proteínas Asociadas a CRISPR/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN Bacteriano/metabolismo , Endodesoxirribonucleasas/metabolismo , Endonucleasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Unión Competitiva , Integrasas/metabolismo , Secuencias Invertidas Repetidas , Plásmidos/metabolismo , Unión Proteica
2.
J Biol Chem ; 286(45): 39585-94, 2011 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-21930710

RESUMEN

In a cell, peptidyl-tRNA molecules that have prematurely dissociated from ribosomes need to be recycled. This work is achieved by an enzyme called peptidyl-tRNA hydrolase. To characterize the RNA-binding site of Escherichia coli peptidyl-tRNA hydrolase, minimalist substrates inspired from tRNA(His) have been designed and produced. Two minisubstrates consist of an N-blocked histidylated RNA minihelix or a small RNA duplex mimicking the acceptor and TψC stem regions of tRNA(His). Catalytic efficiency of the hydrolase toward these two substrates is reduced by factors of 2 and 6, respectively, if compared with N-acetyl-histidyl-tRNA(His). In contrast, with an N-blocked histidylated microhelix or a tetraloop missing the TψC arm, efficiency of the hydrolase is reduced 20-fold. NMR mapping of complex formation between the hydrolase and the small RNA duplex indicates amino acid residues sensitive to RNA binding in the following: (i) the enzyme active site region; (ii) the helix-loop covering the active site; (iii) the region including Leu-95 and the bordering residues 111-117, supposed to form the boundary between the tRNA core and the peptidyl-CCA moiety-binding sites; (iv) the region including Lys-105 and Arg-133, two residues that are considered able to clamp the 5'-phosphate of tRNA, and (v) the positively charged C-terminal helix (residues 180-193). Functional value of these interactions is assessed taking into account the catalytic properties of various engineered protein variants, including one in which the C-terminal helix was simply subtracted. A strong role of Lys-182 in helix binding to the substrate is indicated.


Asunto(s)
Hidrolasas de Éster Carboxílico/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , ARN Bacteriano/química , Aminoacil-ARN de Transferencia/química , ARN de Transferencia de Histidina/química , Sitios de Unión , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Catálisis , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Resonancia Magnética Nuclear Biomolecular , Mapeo Peptídico , Estructura Secundaria de Proteína , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Aminoacil-ARN de Transferencia/genética , Aminoacil-ARN de Transferencia/metabolismo , ARN de Transferencia de Histidina/genética , ARN de Transferencia de Histidina/metabolismo
3.
Nucleic Acids Res ; 31(12): 3227-35, 2003 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-12799450

RESUMEN

An enzyme capable of liberating functional tRNA(Lys) from Escherichia coli diacetyl-lysyl-tRNA(Lys) was purified from the archae Sulfolobus solfataricus. Contrasting with the specificity of peptidyl- tRNA hydrolase (PTH) from E.coli, the S.solfataricus enzyme readily accepts E.coli formyl-methionyl-tRNA(fMet) as a substrate. N-terminal sequencing of this enzyme identifies a gene that has homologs in the whole archaeal kingdom. Involvement of this gene (SS00175) in the recycling of peptidyl-tRNA is supported by its capacity to complement an E.coli strain lacking PTH activity. The archaeal gene, the product of which appears markedly different from bacterial PTHs, also has homologs in all the available eukaryal genomes. Since most of the eukaryotes already display a bacterial-like PTH gene, this observation suggests the occurrence in many eukaryotes of two distinct PTH activities, either of a bacterial or of an archaeal type. Indeed, the bacterial- and archaeal-like genes encoding the two full-length PTHs of Saccharomyces cerevisiae, YHR189w and YBL057c, respectively, can each rescue the growth of an E.coli strain lacking endogeneous PTH. In vitro assays confirm that the two enzymes ensure the recycling of tRNA(Lys) from diacetyl-lysyl-tRNA(Lys). Finally, the growth of yeast cells in which either YHR189w or YBL057c has been disrupted was compared under various culture conditions. Evidence is presented that YHR189w, the gene encoding a bacterial-like PTH, should be involved in mitochondrial function.


Asunto(s)
Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Sulfolobus/enzimología , Animales , Secuencia de Bases , Genes Arqueales , Genoma , Datos de Secuencia Molecular , Saccharomyces cerevisiae/crecimiento & desarrollo , Homología de Secuencia , Especificidad por Sustrato
4.
J Mol Biol ; 412(4): 619-33, 2011 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-21718701

RESUMEN

Escherichia coli peptidyl-tRNA hydrolase activity is inhibited by 3'-(L-[N,N-diacetyl-lysinyl)amino-3'-deoxyadenosine, a stable mimic of the minimalist substrate 2'(3')-O-(L-[N,N-diacetyl-lysinyl)adenosine. The complex of this mimic with the enzyme has been analyzed by NMR spectroscopy, enabling experimental mapping of the catalytic center for the first time. Chemical shift variations point out the sensitivity of residues Asn10, Met67, Asn68, Gly111, Asn114, Leu116, Lys117, Gly147, Phe148, and Val149 to complex formation. Docking simulations based on ambiguous interaction restraints involving these residues show bondings of the peptide moiety of 3'-(l-[N,N-diacetyl-lysinyl)amino-3'-deoxyadenosine with Asn10, Asn68, and Asn114. A stacking interaction of Phe66 with the purine is also indicated. Drawn is a model of enzyme-bound peptidyl-tRNA substrate, in which: (i) the Asn114 δ(2) NH(2) group holds the water molecule that participates in the hydrolysis of the substrate, while Tyr15 binds the phosphate in the 5'-position of the 3'-terminal tRNA adenosine; (ii) the δ(2) NH(2) group of Asn68 holds the main-chain carbonyl of the C-terminal residue of the peptide esterified to tRNA; and (iii) the δ(2) NH(2) group of Asn10 holds the main-chain carbonyl of the penultimate C-residue. Functional value is given to this model by (i) showing that the enzyme becomes confusable with an aminoacyl-tRNA hydrolase upon mutagenesis of Asn10 and (ii) reinterpreting already obtained site-directed mutagenesis data.


Asunto(s)
Hidrolasas de Éster Carboxílico/química , Hidrolasas de Éster Carboxílico/metabolismo , Escherichia coli/enzimología , Sitios de Unión/genética , Hidrolasas de Éster Carboxílico/genética , Desoxiadenosinas/química , Desoxiadenosinas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Espectroscopía de Resonancia Magnética , Modelos Biológicos , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Aminoacil-ARN de Transferencia/química , Aminoacil-ARN de Transferencia/metabolismo , Sensibilidad y Especificidad , Especificidad por Sustrato
5.
Biosens Bioelectron ; 24(6): 1585-91, 2009 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-18823766

RESUMEN

This work describes an ultraviolet biosensing technique based on specific molecular absorption detected with a previously developed spectrally selective aluminum gallium nitride (AlGaN) based detector. Light absorption signal of DNA and proteins, respectively at 260 nm and 280 nm, is used to image biochips. To allow detection of protein or DNA monolayers at the surface of a biochip, we develop contrast-enhancing multilayer substrates. We analyze them through models and experiments and validate the possibility of measuring absorptions of the order of 10(-3). These multilayer structures display a high reflectivity, and maximize the interaction of the electric field with the biological element at the chip surface. Optimization of the experimental absorption, which includes effects such as roughness of the biochip, spectral and angular resolution of the optics, illumination, etc., is carried out with an inorganic ultraviolet absorber (titanium dioxide) deposit. We obtained an induced absorption contrast enhanced by a factor of 4.0, conferring enough sensitivity to detect monolayers of DNA or proteins. Experimental results on an Escherichia coli histidine-tagged methionyl-tRNA synthetase protein before and after complexation with an anti-polyHis specific antibody validate our biosensing technique. This label-free optical method may be helpful in controlling biochip coatings, and subsequent biological coupling at the surface of a biochip.


Asunto(s)
Técnicas Biosensibles/instrumentación , ADN/análisis , Dispositivos Laboratorio en un Chip , Fotometría/instrumentación , Proteínas/análisis , Espectrofotometría Ultravioleta/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Sustancias Macromoleculares/análisis , Fotometría/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Espectrofotometría Ultravioleta/métodos
6.
J Biol Chem ; 281(37): 27575-85, 2006 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-16844682

RESUMEN

Most bacteria and eukarya contain an enzyme capable of specifically hydrolyzing D-aminoacyl-tRNA. Here, the archaea Sulfolobus solfataricus is shown to also contain an enzyme activity capable of recycling misaminoacylated D-Tyr-tRNATyr. N-terminal sequencing of this enzyme identifies open reading frame SS02234 (dtd2), the product of which does not present any sequence homology with the known D-Tyr-tRNATyr deacylases of bacteria or eukaryotes. On the other hand, homologs of dtd2 occur in archaea and plants. The Pyrococcus abyssi dtd2 ortholog (PAB2349) was isolated. It rescues the sensitivity to D-tyrosine of a mutant Escherichia coli strain lacking dtd, the gene of its endogeneous D-Tyr-tRNATyr deacylase. Moreover, in vitro, the PAB2349 product, which behaves as a monomer and carries 2 mol of zinc/mol of protein, catalyzes the cleavage of D-Tyr-tRNATyr. The three-dimensional structure of the product of the Archaeoglobus fulgidus dtd2 ortholog has been recently solved by others through a structural genomics approach (Protein Data Bank code 1YQE). This structure does not resemble that of Escherichia coli D-Tyr-tRNATyr deacylase. Instead, it displays homology with that of a bacterial peptidyl-tRNA hydrolase. We show, however, that the archaeal PAB2349 enzyme does not act against diacetyl-Lys-tRNALys, a model substrate of peptidyl-tRNA hydrolase. Based on the Protein Data Bank 1YQE structure, site-directed mutagenesis experiments were undertaken to remove zinc from the PAB2349 enzyme. Several residues involved in zinc binding and supporting the activity of the deacylase were identified. Taken together, these observations suggest evolutionary links between the various hydrolases in charge of the recycling of metabolically inactive tRNAs during translation.


Asunto(s)
Aminoaciltransferasas/química , Archaea/metabolismo , ARN de Transferencia de Tirosina/química , Secuencia de Aminoácidos , Archaeoglobus fulgidus/metabolismo , Catálisis , Escherichia coli/metabolismo , Iones , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Pyrococcus abyssi/metabolismo , Homología de Secuencia de Aminoácido , Sulfolobus solfataricus/metabolismo , Zinc/química
7.
Biochemistry ; 44(11): 4294-301, 2005 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-15766258

RESUMEN

The 3-D structure of the peptidyl-tRNA hydrolase from the archaea Sulfolobus solfataricus has been solved at 1.8 A resolution. Homologues of this enzyme are found in archaea and eucarya. Bacteria display a different type of peptidyl-tRNA hydrolase that is also encountered in eucarya. In solution, the S. solfataricus hydrolase behaves as a dimer. In agreement, the crystalline structure of this enzyme indicates the formation of a dimer. Each protomer is made of a mixed five-stranded beta-sheet surrounded by two groups of two alpha-helices. The dimer interface is mainly formed by van der Waals interactions between hydrophobic residues belonging to the two N-terminal alpha1 helices contributed by two protomers. Site-directed mutagenesis experiments were designed for probing the basis of specificity of the archaeal hydrolase. Among the strictly conserved residues within the archaeal/eucaryal peptidyl-tRNA hydrolase family, three residues, K18, D86, and T90, appear of utmost importance for activity. They are located in the N-part of alpha1 and in the beta3-beta4 loop. K18 and D86, which form a salt bridge, might play a role in the catalysis thanks to their acid and basic functions, whereas the OH group of T90 could act as a nucleophile. These observations clearly distinguish the active site of the archaeal/eucaryal hydrolases from that of the bacterial/eucaryal ones, where a histidine is believed to serve as the catalytic base.


Asunto(s)
Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Hidrolasas de Éster Carboxílico/química , Hidrolasas de Éster Carboxílico/metabolismo , Sulfolobus solfataricus/enzimología , Secuencia de Aminoácidos , Animales , Proteínas Arqueales/genética , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Sitios de Unión , Hidrolasas de Éster Carboxílico/genética , Dominio Catalítico/genética , Cristalización , Cristalografía por Rayos X , Activación Enzimática/genética , Humanos , Lisina/genética , Lisina/metabolismo , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Estructura Secundaria de Proteína , Especificidad por Sustrato/genética , Sulfolobus solfataricus/genética , Treonina/genética , Treonina/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda