Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Oecologia ; 188(4): 1183-1193, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30357528

RESUMEN

The relationship between forest productivity and tree species diversity has been described in detail, but the underlying processes have yet to be identified. One important issue is to understand which processes are at the origin of observed aboveground overyielding in some mixed forests. We used a beech-maple plantation exhibiting aboveground overyielding to test whether belowground processes could explain this pattern. Soil cores were collected to determine fine root (FR) biomass and vertical distribution. Correlograms were used to detect spatial arrangement. Near-infrared reflectance spectroscopy was used to identify the tree species proportion in the FR samples and spatial root segregation. An isotopic approach was used to identify water acquisition patterns. The structure and the composition of the ectomycorrhizal fungal community were determined by high-throughput sequencing of DNA in the soil samples. We found no spatial pattern for FR biomass or for its vertical distribution along the gradients. No vertical root segregation was found, as FR density for both species decreased with depth in a similar way. The two species displayed similar vertical water acquisition profiles as well, mainly absorbing water from shallow soil layers; hence, niche differentiation for water acquisition was not highlighted here. Significant alterations in the fungal community compositions were detected in function of the percentage of maple in the vicinity of beech. Our findings do not support the commonly suggested drivers of aboveground overyielding in species-diverse forests and suggest that competition reduction or between-species facilitation of belowground resource acquisition may not explain the observed aboveground overyielding.


Asunto(s)
Bosques , Raíces de Plantas , Biomasa , Suelo , Árboles
2.
Oecologia ; 175(2): 577-87, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24705694

RESUMEN

Species may respond in three ways to environmental change: adapt, migrate, or go extinct. Studies of latitudinal clines can provide information on whether species have adapted to abiotic stress such as temperature and drought in the past and what the traits underlying adaptation are. We investigated latitudinal trait variation and response to drought in North American populations of Arabidopsis lyrata. Plants from nine populations collected over 13° latitude were grown under well-watered and dry conditions. A total of 1,620 seedlings were raised and 12 phenological, physiological, morphological, and life history traits were measured. Two traits, asymptotic rosette size and the propensity to flower, were significantly associated with latitude: plants from northern locations grew to a larger size and were more likely to flower in the first season. Most traits displayed a plastic response to drought, but plasticity was never related linearly with latitude nor was it enhanced in populations from extreme latitudes with reduced water availability. Populations responded to drought by adopting mixed strategies of resistance, tolerance, and escape. The study shows that latitudinal adaptation in A. lyrata involves the classic life history traits, size at and timing of reproduction. Contrary to recent theoretical predictions, adaptation to margins is based on fixed trait differences and not on phenotypic plasticity, at least with respect to drought.


Asunto(s)
Adaptación Fisiológica , Arabidopsis/fisiología , Sequías , Aclimatación , Ambiente , Flores , Fenotipo , Reproducción , Estaciones del Año , Temperatura , Agua
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda