Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
World J Surg Oncol ; 20(1): 34, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35164778

RESUMEN

BACKGROUND: Increasing evidence implicates circular RNAs (circRNAs) have been involved in human cancer progression. However, the mechanism remains unclear. In this study, we identified novel circRNAs related to gastric cancer and constructed a circRNA-miRNA-mRNA network. METHODS: Microarray datasets GSE83521 and GSE93541 were obtained from the Gene Expression Omnibus (GEO). Then, we used computational biology to identify circRNAs that were differentially expressed in both GC tissue and plasma compared to normal controls; then, we detected the expression of the selected circRNAs in gastric cell lines by quantitative real-time polymerase chain reaction (qRT-PCR). We also identified circRNA-related candidate miRNAs and their target genes with online tools. Combining the predicted miRNAs and target mRNAs, a competing endogenous RNA regulatory network was established. Functional and pathway enrichment analyses were performed, and interactions between proteins were predicted by using String and Cytoscape. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to elucidate the possible functions of these differentially expressed circRNAs. The regulatory network constructed using the microarray datasets (GSE83521 and GSE93541) contained three differentially co-expressed circRNAs (DECs). A circRNA-miRNA-mRNA network was constructed based on 3 circRNAs, 43 miRNAs and 119 mRNAs. RESULTS: GO and KEGG analysis showed that the regulation of apoptotic signaling pathway and PI3K-Akt signaling pathway were highest degrees of enrichment respectively. We established a protein-protein interaction (PPI) network consisting of 165 nodes and 170 edges and identified hub genes by using MCODE plugin in Cytoscape. Furthermore, a core circRNA-miRNA-mRNA network was constructed based on hub genes. Hsa_circ_0001013 was finally determined to play an important role in the pathogenesis of GC according to the core circRNA-miRNA-mRNA network. CONCLUSIONS: We propose a new circRNA-miRNA-mRNA network that is associated with the pathogenesis of GC. The network may become a new molecular biomarker and could be used to develop potential therapeutic strategies for gastric cancer.


Asunto(s)
MicroARNs , Neoplasias Gástricas , Biología Computacional , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , MicroARNs/genética , Fosfatidilinositol 3-Quinasas , ARN Circular , ARN Mensajero/genética , Neoplasias Gástricas/genética
2.
J Environ Manage ; 286: 112267, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33667820

RESUMEN

Antibiotic pollution is becoming increasingly severe due to its extensive use. The potential application of the anaerobic ammonium oxidation (anammox) process in the treatment of wastewater containing antibiotics has attracted much attention. As common antibiotics, spiramycin (SPM) and streptomycin (STM) are widely used to treat human and animal diseases. However, their combined effects on the anammox process remain unknown. Therefore, this study systematically evaluated the response of the anammox process to both antibiotics. The half maximal inhibitory concentrations of SPM and STM were determined. The continuous-flow anammox system could adapt to SPM and STM at low concentrations, while antibiotics at high concentrations exhibited inhibitory effects. When the concentrations reached 5 mg L-1 SPM and 50 mg L-1 STM, the nitrogen removal efficiency dramatically decreased and then rapidly recovered within 8 days. Correspondingly, the abundances of dominant bacteria and genes also changed with antibiotic concentrations. In general, the anammox process showed a stable performance and a high resistance to SPM and STM, suggesting that acclimatization by elevating the concentrations was beneficial for the anammox process to obtain resistance to different antibiotics with high concentrations. This study provides guidance for the stable operation of anammox-based biological treatment of antibiotics containing wastewater.


Asunto(s)
Compuestos de Amonio , Macrólidos , Aminoglicósidos , Anaerobiosis , Animales , Antibacterianos , Reactores Biológicos , Humanos , Nitrógeno , Oxidación-Reducción , Aguas Residuales
3.
J Clin Pharm Ther ; 45(4): 660-665, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32415722

RESUMEN

WHAT IS KNOWN AND OBJECTIVE: Thyroid follicular carcinoma is a malignant tumor from thyroid follicular epithelium, which is prone to involve capsular and vascular invasion. The present study was conducted in order to detect the expression of microRNA-155-5p (miR-155-5p) in thyroid follicular carcinoma with an attempt to analyze its involvement in apoptosis-related factors. METHODS: Forty-five patients with thyroid follicular carcinoma made up the observation group and 45 patients with thyroid follicular adenoma were included into the control group. Tissues of thyroid follicular carcinoma and thyroid follicular adenoma were obtained from the patients, and analysed for expression of miR-155-5p by real-time fluorescence quantitative PCR (qPCR). The expression of cysteine-containing aspartic acid protein hydrolase-3 (Caspase-3) in thyroid follicular carcinoma was detected with the use of Western Blot analyses. Immunohistochemical method was used to detect the expression of B-cell lymphoma protein-2 (Bcl-2) in thyroid follicular carcinoma. RESULTS: There was significant difference in the expression of miR-155-5p between the two groups (Observation vs Control: 1.46 ± 0.42 vs 0.98 ± 0.33 P < .05). The expression of miR-155-5p was significantly different in the maximum diameter of tumor, vascular invasion and neural invasion (maximum diameter of tumor <4 cm vs ≥4 cm: 1.36 ± 0.40 vs 1.68 ± 0.32, vascular invasion N vs Y: 1.35 ± 0.42 vs 1.69 ± 0.39, Neural invasion N vs Y: 1.35 ± 0.38 vs 1.70 ± 0.31 P < .05). However, there was no significant difference in the expression of miR-155-5p in terms of different gender, age and group with or without lymph node metastasis (P > .05). Based on survival analysis, patients with high expression of miR-155-5p experienced short survival time (median survival time was 45 months, P < .05). There was a negative correlation between miR-155-5p and Caspase-3 (r = -.50, P < .05). In addition, positive correlation was observed between miR-155-5p and Bcl-2 (r = .55, P < .05). WHAT IS NEW AND CONCLUSION: There was increased expression of miR-155-5p in thyroid follicular carcinoma. The abnormal expression of miR-155-5p may be an independent prognostic factor for thyroid follicular carcinoma associated with cell apoptosis.


Asunto(s)
Adenocarcinoma Folicular/genética , Apoptosis/genética , MicroARNs/genética , Neoplasias de la Tiroides/genética , Adulto , Anciano , Anciano de 80 o más Años , Caspasa 3/genética , Proliferación Celular/genética , Femenino , Humanos , Metástasis Linfática/genética , Masculino , Persona de Mediana Edad , Glándula Tiroides/patología
4.
Eur J Med Res ; 29(1): 315, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38849933

RESUMEN

BACKGROUND: Circular RNAs (circRNAs) are involved in the progression of osteoporosis; however, their impact on osteogenic differentiation has yet to be fully elucidated. In this study, we identified a novel circRNA known as circZfp644-205 and investigated its effect on osteogenic differentiation and apoptosis in osteoporosis. METHODS: CircZfp644-205, miR-445-3p, and SMAD2 levels were measured using quantitative real-time polymerase chain reaction (qRT-PCR). MC3T3-E1 cells were subjected to microgravity (MG) to establish a cell model. Osteogenic differentiation was assessed using qRT-PCR, Alizarin Red S staining, alkaline phosphatase staining, and western blot. The apoptosis was evaluated using flow cytometry. The relationship between miR-445-3p and circZfp644-205 or SMAD2 was determined using bioinformatics, RNA pull-down, and luciferase reporter assay. Moreover, a hindlimb unloading mouse model was generated to investigate the role of circZfp644-205 in vivo using Micro-CT. RESULTS: CircZfp644-205 expression was up-regulated significantly in HG-treated MC3T3-E1 cells. Further in vitro studies confirmed that circZfp644-205 knockdown inhibited the osteogenic differentiation and induced apoptosis of pre-osteoblasts. CircZfp644-205 acted as a sponge for miR-455-3p, which reversed the effects of circZfp644-205 on pre-osteoblasts. Moreover, miR-455-3p directly targeted SMAD2, thus inhibiting the expression of SMAD2 to regulate cellular behaviors. Moreover, circZfp644-205 alleviated the progression of osteoporosis in mice. CONCLUSIONS: This study provides a novel circRNA that may serve as a potential therapeutic target for osteoporosis and expands our understanding of the molecular mechanism underlying the progression of osteoporosis.


Asunto(s)
Apoptosis , Diferenciación Celular , MicroARNs , Osteoblastos , Osteogénesis , ARN Circular , Proteína Smad2 , MicroARNs/genética , MicroARNs/metabolismo , Animales , ARN Circular/genética , Apoptosis/genética , Osteoblastos/metabolismo , Diferenciación Celular/genética , Ratones , Proteína Smad2/metabolismo , Proteína Smad2/genética , Osteogénesis/genética , Osteoporosis/genética , Osteoporosis/metabolismo , Osteoporosis/patología
5.
Sci Total Environ ; 953: 175731, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39233076

RESUMEN

Extreme precipitation can significantly influence the water quality of surface waters. However, the total amount of bacteria carried by rainfall runoff is poorly understood. Here, thirty rainfall scenarios were simulated by artificial rainfall simulators, with designed rainfall intensity ranging from 19.3 to 250 mm/h. The instantaneous concentration ranges of R2A, nutrient agar (NA) culturable bacteria, and viable bacteria in runoff depended on the types of underlying surfaces. The instantaneous bacterial concentrations in runoff generated by forest lands, grasslands and bare soil were: R2A culturable bacteria = 104.5-6.3, 104.5-6.1, 104.0-5.3 colony-forming units (CFU)/mL, NA culturable bacteria = 104.0-6.0, 103.9-5.8, 103.2-4.9 CFU/mL, and viable bacteria = 106.4-8.0, 107.0-8.9, 106.4-7.6 cells/mL. Based on the measured bacterial instantaneous concentration in runoff, cumulative dynamic models were established, and the maximum amount of culturable bacteria and viable bacteria entering water sources were estimated to be 109.38-11.31 CFU/m2 and 1011.84-13.25 cells/m2, respectively. The model fitting and the bacterial accumulation dynamics were influenced by the rainfall types (p < 0.01). Surface runoff from the underlying surface of forest lands and grasslands had a high microbial risk that persisted even during the "Drought-to-Deluge Transition". Bacterial accumulation models provide valuable insight for predicting microbial risks in catchments during precipitation and can serve as theoretical support for further ensuring the safety of drinking water under the challenge of climate change.

6.
Environ Sci Pollut Res Int ; 31(30): 42779-42791, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38878241

RESUMEN

Dissolved oxygen (DO) levels and carbon-to-nitrogen (C/N) ratio affect nitrous oxide (N2O) emissions by influencing the physiological and ecological dynamics of nitrifying and denitrifying microbial communities in activated sludge systems. For example, Nitrosomonas is a common N2O producing nitrifying bacteria in wastewater treatment plants (WWTPs), and DO conditions can affect the N2O production capacity. Previous studies have reported N2O emission characteristics under adequate DO and C/N conditions in A/O WWTPs. However, in actual operation, owing to economic and managerial factors, some WWTPs have a long-term state of low DO levels in oxic tanks and low influent C/N. Research on N2O emission characteristics in low DO-limited and low C/N ratio WWTPs is limited. This study investigated N2O emissions and the corresponding shifts in microorganisms within an anoxic-oxic (A/O) WWTP over 9-month. Quantitative PCR was used to assess the abundance of ten functional genes related to nitrification and denitrification processes, and high-throughput sequencing of the 16S rRNA gene was employed to determine the composition change of microorganisms. The findings revealed that 1) the average N2O emission factor was 1.07% in the studied WWTP; 2) the DO-limited oxic tank primarily contributed to N2O; 3) NO2-, TOC, and C/N ratios were key factors for dissolved N2O in the aerobic tank; and 4) Nitrosomonas and Terrimonas exhibited a robust correlation with N2O emissions. This research provides data references for estimating N2O emission factors and developing N2O reduction policies in WWTPs with DO-limited and low C/N ratios.


Asunto(s)
Carbono , Nitrógeno , Óxido Nitroso , Oxígeno , Eliminación de Residuos Líquidos , Aguas Residuales , Óxido Nitroso/análisis , Aguas Residuales/microbiología , Aguas Residuales/química , Desnitrificación , ARN Ribosómico 16S , Microbiota , Nitrificación
7.
Environ Int ; 186: 108599, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38554504

RESUMEN

Ciprofloxacin (CIP) poses a high risk of resistance development in water environments. Therefore, comprehensive effects and recovery strategies of CIP in anaerobic ammonia oxidation (anammox) process were systematically elucidated from consortia and pure strains perspectives. The anammox consortia was not significantly affected by the stress of 10 mg L-1 CIP, while the higher concentration (20 mg L-1) of CIP caused a dramatic reduction in the nitrogen removal performance of anammox system. Simultaneously, the abundances of dominant functional bacteria and corresponding genes also significantly decreased. Such inhibition could not be mitigated by the recovery strategy of adding hydrazine and hydroxylamine. Reducing nitrogen load rate from 5.1 to 1.4 kg N m-3 d-1 promoted the restoration of three reactors. In addition, the robustness and recovery of anammox systems was evaluated using starvation and shock strategies. Simultaneously, antibiotic resistance genes and key metabolic pathways of anammox consortia were upregulated, such as carbohydrate and energy metabolisms. In addition, 11 pure stains were isolated from the anammox system and identified through phylogenetic analysis, 40 % of which showed multidrug resistance, especially Pseudomonas. These findings provide deep insights into the responding mechanism of anammox consortia to CIP stress and promote the application of anammox process for treating wastewater containing antibiotics.


Asunto(s)
Antibacterianos , Ciprofloxacina , Ciprofloxacina/farmacología , Oxidación-Reducción , Amoníaco/metabolismo , Anaerobiosis , Reactores Biológicos/microbiología , Bacterias/metabolismo , Bacterias/genética , Consorcios Microbianos , Nitrógeno/metabolismo , Aguas Residuales/microbiología
8.
Stem Cell Res Ther ; 14(1): 311, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37904247

RESUMEN

OBJECTIVES: The aim of the study was to evaluate the efficacy and safety of allogeneic umbilical cord-derived mesenchymal stem cells (TH-SC01) for complex perianal fistula in patients with Crohn's disease (CD). METHODS: This was an open-label, single-arm clinical trial conducted at Jinling Hospital. Adult patients with complex treatment-refractory CD perianal fistulas (pfCD) were enrolled and received a single intralesional injection of 120 million TH-SC01 cells. Combined remission was defined as an absence of suppuration through an external orifice, complete re-epithelization, and absence of collections larger than 2 cm measured by magnetic resonance imaging (MRI) at 24 weeks after cell administration. RESULTS: A total of 10 patients were enrolled. Six patients (60.0%) achieved combined remission at 24 weeks. The number of draining fistulas decreased in 9 (90.0%) and 7 (70.0%) patients at weeks 12 and 24, respectively. Significant improvement in Perianal Crohn Disease Activity Index, Pelvic MRI-Based Score, Crohn Disease Activity Index, and quality of life score were observed at 24 weeks. No serious adverse events occurred. The probability of remaining recurrence-free was 70% at week 52. CONCLUSION: The study demonstrated that local injection of TH-SC01 cells might be an effective and safe treatment for complex treatment-refractory pfCD after conventional and/or biological treatments fail (ClinicalTrials.gov ID, NCT04939337). TRIAL REGISTRATION: The study was retrospectively registered on www. CLINICALTRIALS: gov (NCT04939337) on June 25, 2021.


Asunto(s)
Enfermedad de Crohn , Trasplante de Células Madre Hematopoyéticas , Células Madre Mesenquimatosas , Fístula Rectal , Adulto , Humanos , Enfermedad de Crohn/terapia , Proyectos Piloto , Calidad de Vida , Fístula Rectal/terapia , Resultado del Tratamiento
9.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 37(3): 256-9, 2012 Mar.
Artículo en Zh | MEDLINE | ID: mdl-22561506

RESUMEN

OBJECTIVE: To analyze cerebral hemodynamic changes by means of transcranial Doppler (TCD) and generally to explore the clinical application of this method in hyperlipemia patients. METHODS: Cerebral hemodynamics were detected by TCD in 63 patients with hyperlipidemia and compared with the hemodynamics of 64 health people. RESULTS: No statistically significant changes were found in the cerebral artery blood flow velocity and pulsatility index between the hyperlipidemic and control groups (P>0.05). Spectral shape, however, was abnormal in 52 patients in the hyperlipemia group (82.54%), which was statistically different (P<0.005) from controls. These abnormalities were classed as follows: 22 patients had abnormal spectra of the vertebrobasilar system, 2 patients had abnormal spectrum of the internal carotid arterial system, and 28 patients had abnormal spectra of both systems. The incidence of the abnormal spectra in vertebrobasilar system was significantly higher than the internal carotidartery (P<0.005). CONCLUSION: TCD examination can reveal abnormal spectral shape in the cerebralartery and vertebrobasilar arterial systems in hyperlipidemia patients, and thus has some clinical value in determining changes in the brain of patients with high cholesterol levels and atherosclerosis.


Asunto(s)
Circulación Cerebrovascular/fisiología , Hemodinámica/fisiología , Hiperlipidemias/diagnóstico por imagen , Hiperlipidemias/fisiopatología , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ultrasonografía Doppler Transcraneal
10.
Kaohsiung J Med Sci ; 38(7): 621-632, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35451560

RESUMEN

Long non-coding RNA ELFN1 antisense RNA 1 (ELFN1-AS1) has been reported as a cancer driver in many human malignancies. This study was conducted to investigate the function of ELFN1-AS1 in gastric cancer (GC) and its mechanism of action. Bioinformatics analysis revealed increased expression of ELFN1-AS1 in GC, and abundant expression of ELFN1-AS1 was observed in the acquired GC cell lines. Knockdown of ELFN1-AS1 in GC cells weakened cell proliferation, invasion, migration, and resistance to apoptosis. ELFN1-AS1 was mainly localized in the nuclei of GC cells. ELFN1-AS1 recruited DNA methyltransferases to the promoter region of ZBTB16 and induced transcriptional repression of ZBTB16 through methylation modification. Furthermore, downregulation of ZBTB16 activated the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway and restored the proliferation and invasiveness of GC cells. In vivo, downregulation of ELFN1-AS1 reduced the growth rate of xenograft tumors in mice. In summary, this study demonstrates that ELFN1-AS1 recruits DNA methyltransferases to the promoter region of ZBTB16 to induce its transcriptional repression, which further augments the development of GC by activating the PI3K/AKT signaling pathway.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Neoplasias Gástricas , Animales , Línea Celular Tumoral , Proliferación Celular/genética , ADN , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Humanos , Metiltransferasas/genética , Ratones , MicroARNs/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteína de la Leucemia Promielocítica con Dedos de Zinc/genética , Proteína de la Leucemia Promielocítica con Dedos de Zinc/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Largo no Codificante/metabolismo , Neoplasias Gástricas/patología
11.
J Hazard Mater ; 434: 128817, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35427966

RESUMEN

Antibiotics and antibiotic resistance genes (ARGs) have been recognized as emerging high-risk pollutants for human and animal health. This study systematically investigated the comprehensive effects of a typical antibiotic (sulfadimidine, SDM) in livestock and poultry breeding wastewater on the anammox process, with the aim of elucidating the intracellular and extracellular protective mechanisms of the anammox consortia to the antibiotic stress. Results revealed that the high-concentration SDM significantly reduced the specific anammox activity (SAA) by 37.8%. Changes in the abundance of Candidatus Kuenenia showed a similar trend with that of SAA, while other nitrogen-related microorganisms (e.g., Nitrosomonas and Nitrospira) contributed to the nitrogen removal especially during the inhibitory period. Resistance of the anammox consortia to SDM mainly depended on the protection of ARGs and EPS. Network analysis revealed the host range of eARGs was relatively larger than that of iARGs, and intI1 was closely associated with representative denitrifiers. In addition, metaproteomic analysis and molecular docking results indicated that abundant proteins in EPS could detain SDM in the extracellular matrix through forming complex via hydrogen bond. These findings provide a guidance for the stable operation of anammox process and ARGs transfer controlling.


Asunto(s)
Oxidación Anaeróbica del Amoníaco , Sulfametazina , Animales , Antibacterianos/farmacología , Reactores Biológicos , Farmacorresistencia Microbiana/genética , Simulación del Acoplamiento Molecular , Nitrógeno , Oxidación-Reducción , Aguas Residuales
12.
Exp Ther Med ; 23(2): 131, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34970354

RESUMEN

Ulcerative colitis (UC) is a significant threat to human life. Hence, there is an urgent requirement to understand the mechanism of UC progression and to develop novel therapeutic interventions for the treatment of UC. The present study aimed to evaluate the potential significance of long non-coding RNA (lncRNA) nuclear enriched abundant transcript 1 (NEAT1) in the progression of UC. NEAT1 expression was detected in colonic mucosa samples from patients with UC and healthy individuals. Fetal human cells (FHCs) were treated with different concentrations of lipopolysaccharides (LPS) to induce UC-caused inflammatory injury, and the effects of NEAT1 knockdown were investigated on cytokines production, cell apoptosis and viability. Furthermore, the correlation and regulation between NEAT1 and microRNA (miRNA/miR)-603 and the fibroblast growth factor 9 (FGF9) pathway were investigated. The results demonstrated that NEAT1 expression was upregulated in the colonic mucosa tissues of patients with UC. In addition, significant cell injury was observed in FHCs treated with different concentrations of LPS, with decreased cell viability, and increased apoptosis and inflammatory cytokines production. Conversely, NEAT1 knockdown significantly reduced LPS-induced cell injury in FHCs, which was achieved through negative regulation of miR-603 expression. Furthermore, FGF9 was negatively regulated by miR-603, and thus, FGF9 was identified as a potential target of miR-603. Notably, FGF9 knockdown reversed the suppressing effects of miR-603 on LPS-induced injury in FHCs. Taken together, the results of the present study suggest that NEAT1 contributes to the development of UC by regulating the miR-603/FGF9 pathway.

13.
J Oncol ; 2022: 9780315, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36245979

RESUMEN

[This corrects the article DOI: 10.1155/2021/9935410.].

14.
Sci Total Environ ; 803: 150009, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34492484

RESUMEN

The anaerobic ammonium oxidation (anammox) process has been recognized as an efficient nitrogen removal technology. However, anammox bacteria are susceptible to surrounding environments and different pollutants, which limits the extensive application of the anammox process worldwide. Numerous researchers investigate the effects of various pollutants on the anammox process or bacteria, and related findings have also been reviewed with the focused on their inhibitory effects on process performance and microbial community. This review systemically summarized the recent advances in the inhibition, mechanism and recovery process of traditional and emerging pollutants on the anammox process over a decade, such as organics, metals, antibiotics, nanoparticles, etc. Generally, low-concentration pollutants exhibited a promotion on the anammox activity, while high-concentration pollutants showed inhibitory effects. The inhibitory threshold concentration of different pollutants varied. The combined effects of multipollutant also attracts more attentions, including synergistic, antagonistic and independent effects. Additionally, remaining problems and research needs are further proposed. This review provides a foundation for future research on the inhibition in anammox process, and promotes the proper operation of anammox processes treating different types of wastewaters.


Asunto(s)
Compuestos de Amonio , Contaminantes Ambientales , Anaerobiosis , Reactores Biológicos , Desnitrificación , Nitrógeno , Oxidación-Reducción , Aguas Residuales
15.
Chemosphere ; 302: 134898, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35561772

RESUMEN

As a key component of extracellular polymeric substances (EPS), extracellular deoxyribonucleic acid (eDNA) acts as a bridge in maintaining the structural stability of granular sludge. However, its ability of carrying antibiotic resistance genes (ARGs) promotes the gene horizontal transfer, raising a high risk for human health. In this study, a series of batch tests were performed to elucidate the response of anammox granular sludge (AnGS) with different sizes (S-AnGS with diameters lower than 0.9 mm and L-AnGS with diameters of 0.9-2 mm) to the removal of eDNA and corresponding mechanism. The results showed that the highest bioactivity of S-AnGS and L-AnGS was achieved by adding DNase I, and the absolute abundance of hzsA in the systems also increased. The dominant microorganism in each sludge was Candidatus Kuenenia, which maintained a higher relative abundance of 24% in S-AnGS. Settling experiments demonstrated that the permeability of AnGS was positively correlated with the addition of DNase I. The permeability index of granular sludge, Г, rose by 58.54% in S-AnGS and 11.79% in L-AnGS. The absence of eDNA is conducive to the increase in the permeability and porosity of AnGS. Similarity in the functional genes and microbial communities of intracellular and extracellular DNA implied the occurrence of gene transmembrane transfer. The findings enrich our knowledge of eDNA in anammox granules and provide a guidance for the specific control of gene transfer through reducing eDNA.


Asunto(s)
Reactores Biológicos , Aguas del Alcantarillado , Oxidación Anaeróbica del Amoníaco , Anaerobiosis , ADN , Desoxirribonucleasa I , Humanos , Nitrógeno , Oxidación-Reducción , Permeabilidad , Aguas del Alcantarillado/química
16.
Sci Total Environ ; 851(Pt 2): 158221, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36041620

RESUMEN

The use of seawater to alleviate water shortages causes an increase of salinity in municipal pipe networks, posing challenges for biological wastewater treatment. The impacts of two compatible solutes on the anammox process under salt stress (20 g L-1) were compared here at the genetic and microbial levels. The findings revealed that both 0.3 mM glycine betaine (GB) and mannitol (MA) could alleviate the salt stress on anammox process, with GB exhibiting a better effect. Specifically, the addition of GB recovered the nitrogen removal efficiency (NRE) from 40 % to >80 % within 13 days. The addition of MA caused the reduction of the absolute abundance of hdh and hzsA, implying that 0.6 mM was not the optimal concentration. Moreover, salt stress induced an increase in the absolute abundance of nitrification functional genes and a decrease in the abundance of denitrification functional genes. Notably, compared with the initial level, the abundance of Candidatus Kuenenia increased by 7.1 % and 4.3 % after adding GB and MA, respectively. According to the network analysis, two compatible solutes promoted the bacterial interactions in anammox systems, which promoted the nitrogen circulation and further the nitrogen removal performance. This work provides a feasible strategy to relieve the salt stress on anammox process and then facilitates its application for treating saline wastewater.


Asunto(s)
Desnitrificación , Aguas Residuales , Reactores Biológicos , Betaína , Manitol , Oxidación Anaeróbica del Amoníaco , Oxidación-Reducción , Nitrógeno , Estrés Salino , Agua , Aguas del Alcantarillado
17.
Remote Sens Appl ; 27: 100789, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35774725

RESUMEN

Remotely sensed imagery is used as a tool to aid decision makers and scientists in a variety of fields. A recent world event in which satellite imagery was extensively relied on by a variety of stakeholders was the COVID-19 pandemic. In this article we aim to give an overview of the types of information offered through remote sensing (RS) to help address different issues related to the pandemic. We also discuss about the stakeholders that benefited from the data, and the value added by its availability. The content is presented under four sub-sections; namely (1) the use of RS in real-time decision-making and strategic planning during the pandemic; how RS revealed the (2) environmental changes and (3) social and economic impacts caused by the pandemic. And (4) how RS informed our understanding of the epidemiology of SARS-CoV-2, the pathogen responsible for the pandemic. High resolution optical imagery offered updated on-the-ground data for e.g., humanitarian aid organizations, and informed operational decision making of shipping companies. Change in the intensity of air and water pollution after reduced anthropogenic activities around the world were captured by remote sensing - supplying concrete evidence that can help inform improved environmental policy. Several economic indicators were measured from satellite imagery, showing the spatiotemporal component of economic impacts caused by the global pandemic. Finally, satellite based meteorological data supported epidemiological studies of environmental disease determinants. The varied use of remote sensing during the COVID-19 pandemic affirms the value of this technology to society, especially in times of large-scale disasters.

18.
Sci Total Environ ; 807(Pt 1): 150784, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34624282

RESUMEN

The effects of multiple antibiotics on the anaerobic ammonia oxidation (anammox) process were investigated. The resistance of the anammox system to high-concentration antibiotics was also demonstrated through gradual acclimation experiments. Inhibition of the anammox process (R1) occurred when the concentrations of erythromycin (ERY), sulfamethoxazole (SMX) and tetracycline (TC) were 0.1, 5.0 and 0.1 mg L-1, respectively. The nitrogen removal efficiency (NRE) of R1 was reduced from 97.2% to 60.7% within 12 days and then recovered to 88.9 ± 9.5% when the nitrogen loading declined from 4.52 ± 0.69 to 2.11 ± 0.58 kg N m-3 d-1. Even when the concentrations of ERY, SMX and TC were as high as 1.0, 15.0 and 1.0 mg L-1, respectively, R1 maintained stable operation. The increases in the abundance of antibiotic resistance genes (ARGs) and in extracellular polymeric substances (EPS) content showed that the anammox process alleviated stress from multiple antibiotics mainly by producing ARGs and secreting EPS. The molecular docking simulation results illustrated the potential binding sites between ammonium transporter and different antibiotics. The upregulation of functional gene expression and the stable abundance of Candidatus Kuenenia in R1 compared with that in the control suggested that the R1 reactor generally maintained more stable long-term operation. This work provides a new understanding of the application of the anammox process to treat wastewater containing multiple antibiotics.


Asunto(s)
Antibacterianos , Microbiota , Oxidación Anaeróbica del Amoníaco , Reactores Biológicos , Simulación del Acoplamiento Molecular , Nitrógeno , Oxidación-Reducción
19.
Bioengineered ; 12(1): 2713-2722, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34130587

RESUMEN

miR-17-5p has been proved that play important roles in many kinds of tumors progression. This study aimed at explore the function and mechanism of miR-17-5p in thyroid cancer (TC). RT-qPCR was used to detect miR-17-5p and Early growth response 2 (EGR2) expression in TC tissues and cells. CCK8 and colony formation assay were used to analyze cell proliferation. Cell migration and cell invasion was detected by Wound-healing assay and Transwell assay. Detection of protein expression using Western blot analysis. Dual-Luciferase assay was used to analyze the relationship between miR-17-5p and EGR2. In vivo experiment was performed by establishing Xenograft animal model to observe the function of miR-17-5p. We found that miR-17-5p is significantly increased in thyroid cancer tissues and cells. miR-17-5p inhibition repressed cell proliferation, clonal formation, cell migration, and cell invasion in thyroid carcinoma. Moreover, miR-17-5p inhibition suppressed tumorigenesis in vivo. Dual-Luciferase assay and Western blotting assay further proved that miR-17-5p has a negative regulation to EGR2. EGR2 was decreased in TC tissues and cells. Overexpressed EGR2 inhibited the development of thyroid carcinoma both vivo and in vivo. EGR2 knockdown remarkably decreased the anti-cancer effect of miR-17-5p inhibition. miR-17-5p is a thyroid cancer oncomir by modulation of the EGR2.


Asunto(s)
Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , MicroARNs/metabolismo , Neoplasias de la Tiroides , Animales , Línea Celular Tumoral , Proteína 2 de la Respuesta de Crecimiento Precoz/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Masculino , Ratones , Ratones Desnudos , MicroARNs/genética , Glándula Tiroides/metabolismo , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/patología
20.
Exp Ther Med ; 22(6): 1404, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34675997

RESUMEN

It has been reported that knockdown of circular RNA (circ) ATPase class II type 9B (Atp9b) can reduce lipopolysaccharide (LPS)-induced inflammation, which plays a notable role in ulcerative colitis (UC). The present study aimed to explore the role of circAtp9b in UC. The expression levels of Atp9b and PTEN in the plasma of patients with UC (n=60) and healthy controls (n=60) were determined via reverse transcription-quantitative PCR. Overexpression of circAtp9b and PTEN were achieved in human colonic epithelial cells (HCnEpCs) to explore the relationship between circAtp9b and PTEN. The role of circAtp9b and PTEN in regulating the apoptosis of HCnEpCs under LPS treatment was evaluated using flow cytometry. The present study revealed that circAtp9b was upregulated in UC and that it was positively correlated with PTEN. In HCnEpCs, LPS treatment resulted in upregulation of circAtp9b in a dose-dependent manner. Moreover, overexpression of circAtp9b mediated the upregulation of PTEN in HCnEpCs, while silencing of circAtp9b decreased the expression levels of PTEN. Apoptosis analysis demonstrated that overexpression of circAtp9b and PTEN promoted the apoptosis of HCnEpCs. In addition, silencing of circAtp9b suppressed apoptosis. Moreover, overexpression of PTEN reduced the effects of silencing of circAtp9b. In conclusion, overexpression of circAtp9b in UC was induced by LPS and it positively upregulated PTEN to promote the apoptosis of HCnEpCs induced by LPS.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda