Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Biomed Mater Res A ; 112(2): 193-209, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37680167

RESUMEN

Hydroxyapatite (HA) bioceramic is a promising substitute for bone defects, and the surface properties are major factors that influence bioactivity and osteoinductivity. In this study, two kinds of HA bioceramics with nanoscale (n-HA) and microscale (m-HA) surface topography were designed to mimic the natural bone, thus enhancing the stimulation of osteogenic differentiation and revealing the potential mechanism. Compared to m-HA, n-HA owned a larger surface roughness, a stronger wettability, and reduced hardness and indentation modulus. Based on these properties, n-HA could maintain the conformation of vitronectin better than m-HA, which may contribute to higher cellular activities and a stronger promotion of osteogenic differentiation of mesenchymal stem cells (MSCs). Further RNA sequencing analysis compared the molecular expression between n-HA and m-HA. Six hundred twenty-seven differentially expressed genes were identified in MSCs, and 17 upregulated genes and 610 downregulated genes were included when n-HA compared to m-HA. The GO cluster analysis and enriched Kyoto encyclopedia of genes and genome signaling pathways revealed a close correlation with the immune process in both upregulated (chemokine signaling pathway and cytokine-cytokine receptor interaction) and downregulated pathways (osteoclasts differentiation). It suggested that the nanoscale surface topography of HA enhanced the osteoinductivity of MSCs and could not be separated from its regulation of immune function and the retention of adsorbed protein conformation.


Asunto(s)
Durapatita , Células Madre Mesenquimatosas , Durapatita/farmacología , Durapatita/metabolismo , Osteogénesis/genética , Diferenciación Celular , Cerámica/farmacología
2.
IEEE Trans Cybern ; PP2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38923487

RESUMEN

External disturbances and packet dropouts will lead to poor control performance for the wastewater treatment process (WWTP). To address this issue, a robust model-free adaptive predictive control (RMFAPC) strategy with a packet dropout compensation mechanism (PDCM) is proposed for WWTP. First, a dynamic linearization approach (DLA), relying only on perturbed process data, is employed to approximate the system dynamics. Second, a predictive control strategy is introduced to avoid a short-sighted control decision, and an extended state observer (ESO) is used to attenuate the disturbance effectively. Furthermore, a PDCM strategy is designed to handle the packet dropout problem, and the stability of RMFAPC is rigorously analyzed. Finally, the correctness and effectiveness of RMFAPC are verified through extensive simulations. The simulation results indicate that RMFAPC can significantly reduce IAE by 0.0223 and 0.1976 in two scenarios, regardless of whether the expected value remains constant or varies. This comparison to MFAPC demonstrates the superior robustness of RMFAPC against disturbances. The ablation experiment on PDCM further confirms its capability in handling the packet dropout problem.

3.
Biomater Adv ; 161: 213858, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38692179

RESUMEN

Nano hydroxyapatite (nHA) has been acknowledged for its inhibition efficiency on tumor cells and its excellent biocompatibility for normal tissue and cells. However, the low inhibitory efficiency of tumor cells and the ambiguous inhibitory mechanism limited its further application. In this work, four kinds of nHA with different sizes was prepared, and the one with the highest inhibition efficiency on 4T1 cells was screened as a substrate for developing the nanoparticles coated with polydopamine (PDA) coating, which was named nHA-PDA. Both in vivo and in vitro experiments were employed, and the results showed significantly higher inhibitory activity against 4T1 cells and 4T1-bared tumors by nHA-PDA. Further investigation revealed that the oxidative stress induced by PDA results in a large Reactive Oxygen Species (ROS) accumulation, thus triggering the mitochondria-dependent apoptosis pathway ROS-JNK/MAPK and inducing the cascade reaction of inhibiting the anti-apoptosis protein-Bcl-2 expression and activating the expression of the critical genes in apoptosis signaling pathway (caspase 3 and caspase 9). Besides, the significant increase of intracellular [Ca2+] may also be an essential reason for the damage of mitochondria, eventually leading to apoptosis.


Asunto(s)
Antineoplásicos , Apoptosis , Durapatita , Indoles , Mitocondrias , Nanopartículas , Polímeros , Especies Reactivas de Oxígeno , Especies Reactivas de Oxígeno/metabolismo , Durapatita/farmacología , Durapatita/química , Indoles/farmacología , Indoles/química , Polímeros/farmacología , Polímeros/química , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Nanopartículas/química , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/química , Ratones , Canales de Calcio/metabolismo , Humanos , Estrés Oxidativo/efectos de los fármacos , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Calcio/metabolismo
4.
Biomater Adv ; 147: 213313, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36753873

RESUMEN

Inflammation-induced by biomaterials is a critical event to determine the success and efficiency of tissue repair. Macrophages are a major population that participates the biomaterial induced inflammation. The response of macrophages depends on the characteristics of biomaterials, thus causing a cascade reaction in subsequent biological processes. In this study, porous biphase calcium phosphate (BCP) ceramics with the different surface structures were constructed to compare the effect of surface structure on bone generation potential, and further reveal the inflammation-involved mechanism. Our results demonstrated that macrophages on three ceramics showed distinct morphologies and spreading areas. The nanoscale whisker structure did induce more bone generation in the mice thigh muscle. The in vitro result revealed that nanoscale whisker structure could drive macrophage polarization towards M1-like phenotype, indicated by a higher expression of pro-inflammatory specific markers (iNOS and CCR7), and mass secretion of TNF-α. Further research indicated that additional TNF-α could promote the osteogenic differentiation of mesenchymal stem cells (MSCs). However, excess addition of TNF-α showed an opposite effect on the osteogenic differentiation of MSCs by initiating the NF-κB signaling pathway, which suppresses the osteogenesis process.


Asunto(s)
Osteogénesis , Factor de Necrosis Tumoral alfa , Animales , Ratones , Porosidad , Vibrisas , Regeneración Ósea , Materiales Biocompatibles/farmacología , Cerámica/química , Inflamación
5.
Regen Biomater ; 10: rbad028, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37091498

RESUMEN

The development of natural polymer-based scaffolds with excellent biocompatibility, antibacterial activity, and blood compatibility, able to facilitate full-thickness skin wound healing, remains challenging. In this study, we have developed three chitosan (CS)-based porous scaffolds, including CS, CS/CNT (carbon nanotubes) and CS/CNT/HA (nano-hydroxyapatite, n-HA) using a freeze-drying method. All three scaffolds have a high swelling ratio, excellent antibacterial activity, outstanding cytocompatibility and blood compatibility in vitro. The introduction of CNTs exhibited an obvious increase in mechanical properties and exerts excellent photothermal response, which displays excellent healing performance as a wound dressing in mouse full-thickness skin wound model when compared to CS scaffolds. CS/CNT/HA composite scaffolds present the strongest ability to promote full-thickness cutaneous wound closure and skin regeneration, which might be ascribed to the synergistic effect of photothermal response from CNT and excellent bioactivity from n-HA. Overall, the present study indicated that CNT and n-HA can be engineered as effective constituents in wound dressings to facilitate full-thickness skin regeneration.

6.
Pharmaceutics ; 15(5)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37242742

RESUMEN

Rheumatoid arthritis (RA) is an autoimmune disease of synovial inflammation that affects populations worldwide. Transdermal drug delivery systems for treating RA have increased but remain challenging. We fabricated a dissolving microneedle (MN) system with photothermal (PT) polydopamine (PDA) to co-load the non-steroidal anti-inflammatory drug loxoprofen (Lox) and the Janus kinase inhibitor tofacitinib (Tof), with the aim of co-delivering Lox and Tof directly to the articular cavity, aided by the combination of MN and PT. In vitro and in vivo permeation studies showed that the PT MN significantly promoted drug permeation and retention in the skin. An in vivo visualization of the drug distribution in the articular cavity showed that the PT MN significantly promoted drug retention in the articular cavity. Importantly, compared to the intra-articular injection of Lox and Tof, the application of the PT MN to a carrageenan/kaolin-induced arthritis rat model exhibited superior performance in reducing joint swelling, muscle atrophy, and cartilage destruction. Furthermore, the PT MN downregulated the mRNA expression levels of proinflammatory cytokines, including TNF-α, IL-1ß, iNOS, JAK2, JAK3, and STAT3. The results show that the PT MN transdermal co-delivery of Lox and Tof is a new synergetic therapy with high compliance and good therapeutic efficacy for RA.

7.
Carbohydr Polym ; 277: 118819, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34893236

RESUMEN

Psoriasis does not respond adequately to the monotherapy, tailoring combined strategies for synergistical treatment remains challenging. We fabricated chitosan/hyaluronan nanogels to co-load methotrexate (MTX) and 5-aminoleavulinic acid (ALA), i.e., MTX-ALA NGs, for a combined chemo-photodynamic therapy for psoriasis. Compared with MTX-ALA suspension, the NGs enhanced the penetration and retention of MTX and ALA through and into the skin in vitro and in vivo (p < 0.001). NGs enhanced the cellular uptake (p < 0.001), protoporphyrin IX conversion (p < 0.001), and reactive oxygen species generation (3.93-fold), subsequently exerted the synergistical anti-proliferation and apoptosis on lipopolysaccharide-irritated HaCaT cells with the apoptosis rate of 78.6%. MTX-ALA NGs efficiently ameliorated the skin manifestations and down-regulated the proinflammatory cytokines of TNF-α and IL-17A in imiquimod-induced psoriatic mice (p < 0.001). Importantly, MTX-ALA NGs reduced the toxicities of oral MTX to the liver and kidney. The results support that MTX-ALA NG is a convenient, effective, and safe combined chemo-photodynamic strategy for psoriasis treatment.


Asunto(s)
Ácidos Levulínicos/uso terapéutico , Metotrexato/uso terapéutico , Nanogeles/química , Fármacos Fotosensibilizantes/uso terapéutico , Psoriasis/tratamiento farmacológico , Línea Celular , Quitosano/química , Quimioterapia Combinada , Humanos , Ácido Hialurónico/química , Ácidos Levulínicos/química , Lipopolisacáridos , Metotrexato/química , Fármacos Fotosensibilizantes/química , Psoriasis/inducido químicamente , Psoriasis/metabolismo , Ácido Aminolevulínico
8.
Front Neurol ; 13: 875402, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35937066

RESUMEN

Objective: The intracranial venous system plays an important role in ensuring blood circulation and a stable blood supply to the fetal brain. In the present study, a cross-sectional area of the fetal straight sinus was quantitatively evaluated by fetal magnetic resonance imaging (MRI) to explore the method's clinical value. Methods: The clinical and MRI data of 126 normal fetuses in mid-to-late stage pregnancies were retrospectively analyzed. The "dominant" sequence of the fetal straight sinus was selected, and the cross-sectional area of the lumen was measured at each gestational age to obtain the normal range at different ages and to analyze the developmental pattern and characteristics of the fetal straight sinus. Results: There were statistically significant differences in the cross-sectional area of the fetal straight sinus among different gestational ages (P < 0.05). The cross-sectional area of the fetal straight sinus was positively correlated with gestational age (coefficient of determination = 0.6892, P < 0.05). That is, the cross-sectional area of the fetal straight sinus grew with increasing gestational age, and the regression equation was y = 0.27 x - 2.14 (P < 0.05). Additionally, there were five fetuses with cerebral venous abnormalities, including four with heart failure and one with venous sinus thrombosis. Conclusion: Quantitative measurement of a cross-sectional area of the fetal straight sinus by MRI enhanced understanding of the anatomical features and developmental pattern of fetal cerebral veins and provided a reference for the clinical diagnosis of related diseases and investigation concerning pathogenesis.

9.
J Colloid Interface Sci ; 677(Pt A): 446-458, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39098278

RESUMEN

5-aminolevulinic acid photodynamic therapy (ALA-PDT) is an emerging therapeutic strategy for skin cancer due to its noninvasiveness and high spatiotemporal selectivity. However, poor skin penetration, poor intratumoral delivery, the instability of aqueous ALA, and the tumor's inherent hypoxia microenvironment are major hurdles hindering the efficacy of ALA-PDT. Herein, we aim to address these challenges by using microneedles (MNs) to assist in delivering nanoparticles based on natural polymeric tea polyphenols (TP NPs) to self-assemble and load ALA (ALA@TP NPs). The TP NPs specifically increase cellular uptake of ALA by A375 and A431 cells and reduce mitochondrial membrane potential. Subsequently, the photosensitizer protoporphyrin IX derived from ALA accumulates in the tumor cells in a dose-dependent manner with TP NPs, generating reactive oxygen species to promote apoptosis and necrosis of A375 and A431 cells. Interestingly, TP NPs can ameliorate the tumor's inherent hypoxia microenvironment and rapid oxygen consumption during PDT by inhibiting hypoxia inducible factor-1α, thereby boosting reactive oxygen species (ROS) generation and enhancing ALA-PDT efficacy through a positive feedback loop. After ALA@TP NPs are loaded into MNs to fabricate ALA@TP NPs@MNs, the MNs enhance skin penetration and storage stability of ALA. Importantly, they exhibit remarkable antitumor efficacy in A375-induced melanoma and A431-induced squamous cell carcinoma with a reduced dose of ALA and reverse hypoxia in vivo. This study provides a facile and novel strategy that integrates MNs and green NPs of TP for addressing the bottlenecks of ALA-PDT and enhancing the ALA-PDT efficacy against skin cancers for future clinical translation.


Asunto(s)
Ácido Aminolevulínico , Nanopartículas , Agujas , Fotoquimioterapia , Fármacos Fotosensibilizantes , Polifenoles , Neoplasias Cutáneas , , Ácido Aminolevulínico/química , Ácido Aminolevulínico/farmacología , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/patología , Polifenoles/química , Polifenoles/farmacología , Humanos , Nanopartículas/química , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Animales , Té/química , Ratones , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/administración & dosificación , Especies Reactivas de Oxígeno/metabolismo , Tamaño de la Partícula , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular/efectos de los fármacos , Ratones Desnudos , Propiedades de Superficie , Ratones Endogámicos BALB C
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda