Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Opt Express ; 30(13): 23065-23077, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-36224994

RESUMEN

Precise photon flux measurement of single photon sources (SPSs) is essential to the successful application of SPSs. In this work, a novel method, to our knowledge, was proposed for direct measurement of the absolute photon flux of single photon sources with a femtosecond laser multiphoton microscope. A secondary 2-mm-diameter aperture was installed under the microscope objective to define the numerical aperture (NA) of the microscope. The defined NA was precisely measured to be 0.447. An LED-based miniaturized integrating sphere light source (LED-ISLS) was used as a standard radiance source to calibrate the photon flux responsivity of the multiphoton microscope, with the defined NA. The combined standard uncertainty of the measured photon flux responsivity was 1.97%. Absolute photon flux from a quantum-dot based emitter was measured by the multiphoton microscope. The uncertainty of the photon flux was evaluated to be 2.1%. This work offers a new, to our knowledge, radiometric method for fast calibration of photon flux responsivity of microscopes, and absolute photon flux calibration of single photon sources.

2.
Opt Express ; 28(14): 20074-20082, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32680075

RESUMEN

Time-of-flight method was adopted to measure the distance between two parallel precision apertures utilized in a vacuum chamber for cryogenic radiometry. The diameters of the apertures are 9 mm and 8 mm, respectively. A 1550-nm femtosecond pulse laser, a 70-GHz photodetector, and a 30-GHz oscilloscope were used to measure the round-trip flight time difference between the flat front surfaces of the two precision apertures. The distance between the apertures was analyzed to be 0.36423 m with a relative standard uncertainty of 0.004%. The non-contact distance measurement method is useful for applications such as low background infrared radiance measurement system based on an absolute cryogenic radiometer.

3.
Opt Express ; 28(21): 32199-32213, 2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33115182

RESUMEN

LED-based integrating sphere light sources (LED-ISLSs) in the size of typical microscope slides were developed to calibrate the radiance responsivity of optical imaging microscopes. Each LED-ISLS consists of a miniaturized integrating sphere with a diameter of 4 mm, an LED chip integrated on a printed circuit board, and a thin circular aperture with a diameter of 1 mm as the exit port. The non-uniformity of the radiant exitance of the LED-ISLSs was evaluated to be 0.8%. The normal radiance of the LED-ISLSs in the range of (5∼69) W m-2 sr-1 was measured with a standard uncertainty of 1.3% using two precision apertures and a standard silicon photodetector whose spectral responsivity is traceable to an absolute cryogenic radiometer. The LED-ISLSs were applied to calibrate the radiance responsivity of a home-built optical imaging microscope with a standard uncertainty of 2.6∼2.9%. The LED-ISLSs offer a practical way to calibrate the radiance responsivity of various optical imaging microscopes for results comparison and information exchange.

4.
Opt Express ; 24(3): 3055-66, 2016 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-26906871

RESUMEN

Using cavity confinement to enhance the plasma emission has been proved to be an effective way in LIBS technique while no direct visual evidence has been made to illustrate the physical mechanism of this enhancing effect. In this work, both laser-induced plasma plume images and shockwave images were obtained and synchronized for both flat surface case and rectangular cavity case. Phenomena of shockwave reflection, plasma compression by the reflected shockwave and merge of the reflected shockwave into plasma were observed. Plasma emission intensities recorded by ICCD in both cases were compared and the enhancement effect in the cavity case was identified in the comparison. The enhancement effect could be explained as reflected shockwave "compressing" effect, that is, the reflected shockwave would compress the plasma and result in a more condensed plasma core area with higher plasma temperature. Reflected shockwave also possibly contributed to plasma core position stabilization, which indicated the potential of better plasma signal reproducibility for the cavity case. Both plasma emission enhancement and plasma core position stabilization only exist within a certain temporal window, which indicates that the delay time of spectra acquisition is essential while using cavity confinement as a way to improve LIBS performance.

5.
Anal Chim Acta ; 1058: 39-47, 2019 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-30851852

RESUMEN

The self-absorption effect due to optically thick property greatly influences the measured line intensities as well as the performance of quantification for laser-induced breakdown spectroscopy (LIBS) especially for calibration-free LIBS which requires proper correction. In this paper, a new self-absorption correction method for Calibration-Free LIBS (CF-LIBS), called blackbody radiation referenced self-absorption correction (BRR-SAC) is proposed. An iterative algorithm was designed to calculate the plasma temperature and normally hard-to-obtain collection efficiency of the optical collection system by directly comparing the measured spectrum with the corresponding theoretical blackbody radiation for self-absorption correction. Compared with generally applied self-absorption correction methods based on the principle of curve of growth, the proposed method has obvious advantages of simpler programming, higher computation efficiency, and its independency of the availability or accuracy of line broadening coefficients. Experiments were conducted on titanium alloy samples. The experimental results showed that the self-absorption was corrected with increased linearity of the Boltzmann plots and the measurement accuracy of the elemental concentration was significantly improved through BRR-SAC. Compared with the traditional CF-LIBS with self-absorption correction, the proposed method also showed better performance. In addition, BRR-SAC provides a simple way to obtain the collection efficiency of the experimental setup, which benefits the plasma diagnostics and quantitative analysis.

6.
Appl Spectrosc ; 73(2): 163-170, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30345795

RESUMEN

This work reports an investigation on the feasibility of using a photomultiplier tube (PMT) to follow the time evolution of self-absorption of copper resonance transitions at 324.7 nm and 327.4 nm. The plasma was obtained by focusing a Nd:YAG laser, operated at 1064 nm, on a series of aluminum alloy standard disks containing different copper concentrations. The results described have been obtained at different times and with different set-ups. These set-ups consisted of a Paschen-Runge polychromator, a LIBS 2000 spectrometer, and a spectrometer equipped with both an intensified charge-coupled device (ICCD) and PMT. Both PMT signals and time-resolved spectra were obtained and the ratio of the two Cu resonant lines was calculated, compared, and discussed. By selecting different delay times and integration gates of the PMT signals, the self-absorption effect of the Cu resonant lines was found to be changing, implying that, by careful selection of the integration window of PMT signals, the self-absorption may be minimized, thus improving the calibration linearity of the technique.

7.
Appl Spectrosc ; 68(9): 955-62, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25226249

RESUMEN

Measurement of coal carbon content using laser-induced breakdown spectroscopy (LIBS) is limited by its low precision and accuracy. A modified spectrum standardization method was proposed to achieve both reproducible and accurate results for the quantitative analysis of carbon content in coal using LIBS. The proposed method used the molecular emissions of diatomic carbon (C2) and cyanide (CN) to compensate for the diminution of atomic carbon emissions in high volatile content coal samples caused by matrix effect. The compensated carbon line intensities were further converted into an assumed standard state with standard plasma temperature, electron number density, and total number density of carbon, under which the carbon line intensity is proportional to its concentration in the coal samples. To obtain better compensation for fluctuations of total carbon number density, the segmental spectral area was used and an iterative algorithm was applied that is different from our previous spectrum standardization calculations. The modified spectrum standardization model was applied to the measurement of carbon content in 24 bituminous coal samples. The results demonstrate that the proposed method has superior performance over the generally applied normalization methods. The average relative standard deviation was 3.21%, the coefficient of determination was 0.90, the root mean square error of prediction was 2.24%, and the average maximum relative error for the modified model was 12.18%, showing an overall improvement over the corresponding values for the normalization with segmental spectrum area, 6.00%, 0.75, 3.77%, and 15.40%, respectively.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda