Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Cell ; 151(3): 533-46, 2012 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-23063653

RESUMEN

Drosophila Dicer-1 produces microRNAs (miRNAs) from pre-miRNA, whereas Dicer-2 generates small interfering RNAs (siRNAs) from long dsRNA. Alternative splicing of the loquacious (loqs) mRNA generates three distinct Dicer partner proteins. To understand the function of each, we constructed flies expressing Loqs-PA, Loqs-PB, or Loqs-PD. Loqs-PD promotes both endo- and exo-siRNA production by Dicer-2. Loqs-PA or Loqs-PB is required for viability, but the proteins are not fully redundant: a specific subset of miRNAs requires Loqs-PB. Surprisingly, Loqs-PB tunes where Dicer-1 cleaves pre-miR-307a, generating a longer miRNA isoform with a distinct seed sequence and target specificity. The longer form of miR-307a represses glycerol kinase and taranis mRNA expression. The mammalian Dicer-partner TRBP, a Loqs-PB homolog, similarly tunes where Dicer cleaves pre-miR-132. Thus, Dicer-binding partner proteins change the choice of cleavage site by Dicer, producing miRNAs with target specificities different from those made by Dicer alone or Dicer bound to alternative protein partners.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , ARN Helicasas/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribonucleasa III/metabolismo , Animales , Secuencia de Bases , Drosophila melanogaster/genética , Femenino , Humanos , Masculino , Ratones , MicroARNs/metabolismo , Datos de Secuencia Molecular
2.
PLoS Genet ; 17(6): e1009655, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34181646

RESUMEN

During spermatogenesis, the process in which sperm for fertilization are produced from germline cells, gene expression is spatiotemporally highly regulated. In Drosophila, successful expression of extremely large male fertility factor genes on Y-chromosome spanning some megabases due to their gigantic intron sizes is crucial for spermatogenesis. Expression of such extremely large genes must be challenging, but the molecular mechanism that allows it remains unknown. Here we report that a novel RNA-binding protein Maca, which contains two RNA-recognition motifs, is crucial for this process. maca null mutant male flies exhibited a failure in the spermatid individualization process during spermatogenesis, lacked mature sperm, and were completely sterile, while maca mutant female flies were fully fertile. Proteomics and transcriptome analyses revealed that both protein and mRNA abundance of the gigantic male fertility factor genes kl-2, kl-3, and kl-5 (kl genes) are significantly decreased, where the decreases of kl-2 are particularly dramatic, in maca mutant testes. Splicing of the kl-3 transcripts was also dysregulated in maca mutant testes. All these physiological and molecular phenotypes were rescued by a maca transgene in the maca mutant background. Furthermore, we found that in the control genetic background, Maca is exclusively expressed in spermatocytes in testes and enriched at Y-loop A/C in the nucleus, where the kl-5 primary transcripts are localized. Our data suggest that Maca increases transcription processivity, promotes successful splicing of gigantic introns, and/or protects transcripts from premature degradation, of the kl genes. Our study identified a novel RNA-binding protein Maca that is crucial for successful expression of the gigantic male fertility factor genes, spermatogenesis, and male fertility.


Asunto(s)
Drosophila melanogaster/genética , Proteínas de Unión al ARN/genética , Espermátides/metabolismo , Espermatocitos/metabolismo , Espermatogénesis/genética , Transcriptoma , Animales , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Femenino , Fertilidad/genética , Regulación de la Expresión Génica , Ontología de Genes , Genes Reporteros , Prueba de Complementación Genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Anotación de Secuencia Molecular , Mutación , Proteínas de Unión al ARN/metabolismo , Espermátides/citología , Espermátides/crecimiento & desarrollo , Espermatocitos/citología , Espermatocitos/crecimiento & desarrollo , Testículo/citología , Testículo/metabolismo , Cromosoma Y/química
4.
RNA ; 25(7): 825-839, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30979781

RESUMEN

Drosophila Belle (human ortholog DDX3) is a conserved DEAD-box RNA helicase implicated in regulating gene expression. However, the molecular mechanisms by which Belle/DDX3 regulates gene expression are poorly understood. Here we performed systematic mutational analysis to determine the contributions of conserved motifs within Belle to its in vivo function. We found that Belle RNA-binding and RNA-unwinding activities and intrinsically disordered regions (IDRs) are required for Belle in vivo function. Expression of Belle ATPase mutants that cannot bind, hydrolyze, or release ATP resulted in dominant toxic phenotypes. Mechanistically, we discovered that Belle up-regulates reporter protein level when tethered to reporter mRNA, without corresponding changes at the mRNA level, indicating that Belle promotes translation of mRNA that it binds. Belle ATPase activity and amino-terminal IDR were required for this translational promotion activity. We also found that ectopic ovary expression of dominant Belle ATPase mutants decreases levels of cyclin proteins, including Cyclin B, without corresponding changes in their mRNA levels. Finally, we found that Belle binds endogenous cyclin B mRNA. We propose that Belle promotes translation of specific target mRNAs, including cyclin B mRNA, in an ATPase activity-dependent manner.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , ARN Helicasas DEAD-box/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , ARN Helicasas/metabolismo , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , Adenosina Trifosfatasas/genética , Animales , Ciclina B/genética , Ciclina B/metabolismo , ARN Helicasas DEAD-box/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Ojo/crecimiento & desarrollo , Ojo/metabolismo , Femenino , Infertilidad Femenina , Infertilidad Masculina , Proteínas Intrínsecamente Desordenadas/genética , Masculino , Fenotipo , ARN Helicasas/genética , ARN Mensajero/genética
5.
Nucleic Acids Res ; 46(7): 3726-3741, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29373753

RESUMEN

Dicer partner proteins Drosophila Loquacious-PB (Loqs-PB) and human TRBP tune the length of miRNAs produced by Dicer from a subset of pre-miRNAs and thereby alter their target repertoire, by an unknown mechanism. Here, we developed a novel high-throughput method that we named Dram-seq (Dice randomized pre-miRNA pool and seq) to study length distributions of miRNAs produced from thousands of different pre-miRNA variants. Using Dram-seq, we found that a base-mismatch in the pre-miRNA stem can alter the length of miRNAs compared with a base-pair at the same position in both Drosophila and human, and is important for the miRNA length tuning by Loqs-PB. Loqs-PB directly bound base-mismatched nucleotides in the pre-miRNA stem. We speculate that Loqs-PB tunes miRNA length by changing the conformation of base-mismatched nucleotides in the pre-miRNA stem to that of base-paired ones and thereby altering the distance of the pre-miRNA stem.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Homeodominio/genética , MicroARNs/genética , Proteínas de Unión al ARN/genética , Factores de Transcripción/genética , Animales , Emparejamiento Base/genética , ARN Helicasas DEAD-box/genética , Drosophila melanogaster/genética , Humanos , Conformación de Ácido Nucleico , Ribonucleasa III/genética
6.
RNA ; 23(7): 1139-1153, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28416567

RESUMEN

Drosophila Dicer-2 efficiently and precisely produces 21-nucleotide (nt) siRNAs from long double-stranded RNA (dsRNA) substrates and loads these siRNAs onto the effector protein Argonaute2 for RNA silencing. The functional roles of each domain of the multidomain Dicer-2 enzyme in the production and loading of siRNAs are not fully understood. Here we characterized Dicer-2 mutants lacking either the N-terminal helicase domain or the C-terminal dsRNA-binding domain (CdsRBD) (ΔHelicase and ΔCdsRBD, respectively) in vivo and in vitro. We found that ΔCdsRBD Dicer-2 produces siRNAs with lowered efficiency and length fidelity, producing a smaller ratio of 21-nt siRNAs and higher ratios of 20- and 22-nt siRNAs in vivo and in vitro. We also found that ΔCdsRBD Dicer-2 cannot load siRNA duplexes to Argonaute2 in vitro. Consistent with these findings, we found that ΔCdsRBD Dicer-2 causes partial loss of RNA silencing activity in vivo. Thus, Dicer-2 CdsRBD is crucial for the efficiency and length fidelity in siRNA production and for siRNA loading. Together with our previously published findings, we propose that CdsRBD binds the proximal body region of a long dsRNA substrate whose 5'-monophosphate end is anchored by the phosphate-binding pocket in the PAZ domain. CdsRBD aligns the RNA to the RNA cleavage active site in the RNase III domain for efficient and high-fidelity siRNA production. This study reveals multifunctions of Dicer-2 CdsRBD and sheds light on the molecular mechanism by which Dicer-2 produces 21-nt siRNAs with a high efficiency and fidelity for efficient RNA silencing.


Asunto(s)
Proteínas Argonautas/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , ARN Helicasas/química , ARN Helicasas/metabolismo , ARN Interferente Pequeño/metabolismo , Ribonucleasa III/química , Ribonucleasa III/metabolismo , Animales , Animales Modificados Genéticamente , Sitios de Unión , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Técnicas In Vitro , Mutación , Unión Proteica , Dominios Proteicos , ARN Helicasas/genética , Ribonucleasa III/genética
7.
RNA Biol ; 16(10): 1386-1400, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31195914

RESUMEN

Metamorphosis is an intricate developmental process in which large-scale remodelling of mRNA and microRNA (miRNA) profiles leads to orchestrated tissue remodelling and organogenesis. Whether, which, and how, ribonucleases (RNases) are involved in the RNA profile remodelling during metamorphosis remain unknown. Human Regnase-1 (also known as MCPIP1 and Zc3h12a) RNase remodels RNA profile by cleaving specific RNAs and is a crucial modulator of immune-inflammatory and cellular defence. Here, we studied Drosophila CG10889, which we named Drosophila Regnase-1, an ortholog of human Regnase-1. The larva-to-adult metamorphosis in Drosophila includes two major transitions, larva-to-pupa and pupa-to-adult. regnase-1 knockout flies developed until the pupa stage but could not complete pupa-to-adult transition, dying in puparium case. Regnase-1 RNase activity is required for completion of pupa-to-adult transition as transgenic expression of wild-type Drosophila Regnase-1, but not the RNase catalytic-dead mutants, rescued the pupa-to-adult transition in regnase-1 knockout. High-throughput RNA sequencing revealed that regnase-1 knockout flies fail to remodel mRNA and miRNA profiles during the larva-to-pupa transition. Thus, we uncovered the roles of Drosophila Regnase-1 in the larva-to-adult metamorphosis and large-scale remodelling of mRNA and miRNA profiles during this metamorphosis process.


Asunto(s)
Drosophila/fisiología , Metamorfosis Biológica/genética , MicroARNs/genética , ARN Mensajero/genética , Ribonucleasas/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Catálisis , Expresión Génica , Hidrólisis , Larva , Mutación , Ribonucleasas/genética
8.
Mol Cell ; 42(2): 172-84, 2011 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-21419681

RESUMEN

Drosophila Dicer-2 generates small interfering RNAs (siRNAs) from long double-stranded RNA (dsRNA), whereas Dicer-1 produces microRNAs (miRNAs) from pre-miRNA. What makes the two Dicers specific for their biological substrates? We find that purified Dicer-2 can efficiently cleave pre-miRNA, but that inorganic phosphate and the Dicer-2 partner protein R2D2 inhibit pre-miRNA cleavage. Dicer-2 contains C-terminal RNase III domains that mediate RNA cleavage and an N-terminal helicase motif, whose function is unclear. We show that Dicer-2 is a dsRNA-stimulated ATPase that hydrolyzes ATP to ADP; ATP hydrolysis is required for Dicer-2 to process long dsRNA, but not pre-miRNA. Wild-type Dicer-2, but not a mutant defective in ATP hydrolysis, can generate siRNAs faster than it can dissociate from a long dsRNA substrate. We propose that the Dicer-2 helicase domain uses ATP to generate many siRNAs from a single molecule of dsRNA before dissociating from its substrate.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Fosfatos/metabolismo , ARN Helicasas/metabolismo , Procesamiento Postranscripcional del ARN , ARN Bicatenario/metabolismo , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribonucleasa III/metabolismo , Adenosina Difosfato/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Hidrólisis , Cinética , MicroARNs/metabolismo , Modelos Biológicos , ARN Helicasas/genética , Ribonucleasa III/genética , Especificidad por Sustrato
9.
Proc Natl Acad Sci U S A ; 113(49): 14031-14036, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27872309

RESUMEN

The enzyme Dicer produces small silencing RNAs such as micro-RNAs (miRNAs) and small interfering RNAs (siRNAs). In Drosophila, Dicer-1 produces ∼22-24-nt miRNAs from pre-miRNAs, whereas Dicer-2 makes 21-nt siRNAs from long double-stranded RNAs (dsRNAs). How Dicer-2 precisely makes 21-nt siRNAs with a remarkably high fidelity is unknown. Here we report that recognition of the 5'-monophosphate of a long dsRNA substrate by a phosphate-binding pocket in the Dicer-2 PAZ (Piwi, Argonaute, and Zwille/Pinhead) domain is crucial for the length fidelity, but not the efficiency, in 21-nt siRNA production. Loss of the length fidelity, meaning increased length heterogeneity of siRNAs, caused by point mutations in the phosphate-binding pocket of the Dicer-2 PAZ domain decreased RNA silencing activity in vivo, showing the importance of the high fidelity to make 21-nt siRNAs. We propose that the 5'-monophosphate of a long dsRNA substrate is anchored by the phosphate-binding pocket in the Dicer-2 PAZ domain and the distance between the pocket and the RNA cleavage active site in the RNaseIII domain corresponds to the 21-nt pitch in the A-form duplex of a long dsRNA substrate, resulting in high-fidelity 21-nt siRNA production. This study sheds light on the molecular mechanism by which Dicer-2 produces 21-nt siRNAs with a remarkably high fidelity for efficient RNA silencing.


Asunto(s)
Proteínas de Drosophila/fisiología , ARN Helicasas/fisiología , Interferencia de ARN/fisiología , ARN Interferente Pequeño/biosíntesis , Ribonucleasa III/fisiología , Secuencia de Aminoácidos , Animales , Sitios de Unión , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , MicroARNs , Proteínas de Unión a Fosfato/metabolismo , Unión Proteica , Dominios Proteicos , ARN Helicasas/metabolismo , ARN Bicatenario/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ribonucleasa III/metabolismo , Especificidad por Sustrato
10.
EMBO J ; 33(4): 371-84, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24488111

RESUMEN

In Drosophila, Dicer-1 produces microRNAs (miRNAs) from pre-miRNAs, whereas Dicer-2 generates small interfering RNAs from long double-stranded RNA (dsRNA), a process that requires ATP hydrolysis. We previously showed that inorganic phosphate inhibits Dicer-2 cleavage of pre-miRNAs, but not long dsRNAs. Here, we report that phosphate-dependent substrate discrimination by Dicer-2 reflects dsRNA substrate length. Efficient processing by Dicer-2 of short dsRNA requires a 5' terminal phosphate and a two-nucleotide, 3' overhang, but does not require ATP. Phosphate inhibits cleavage of such short substrates. In contrast, cleavage of longer dsRNA requires ATP but no specific end structure: phosphate does not inhibit cleavage of these substrates. Mutation of a pair of conserved arginine residues in the Dicer-2 PAZ domain blocked cleavage of short, but not long, dsRNA. We propose that inorganic phosphate occupies a PAZ domain pocket required to bind the 5' terminal phosphate of short substrates, blocking their use and restricting pre-miRNA processing in flies to Dicer-1. Our study helps explain how a small molecule can alter the substrate specificity of a nucleic acid processing enzyme.


Asunto(s)
Proteínas de Drosophila/efectos de los fármacos , Drosophila melanogaster/metabolismo , MicroARNs/metabolismo , Fosfatos/farmacología , ARN Helicasas/efectos de los fármacos , Ribonucleasa III/efectos de los fármacos , Sustitución de Aminoácidos , Animales , Arginina , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Femenino , Mutagénesis Sitio-Dirigida , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , ARN Helicasas/química , ARN Helicasas/genética , ARN Helicasas/metabolismo , ARN Bicatenario/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Ribonucleasa III/química , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Especificidad por Sustrato
11.
Biochem Biophys Res Commun ; 498(4): 1022-1027, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29550490

RESUMEN

Drosophila Dicer-2 processes RNA substrates into short interfering RNAs (siRNAs). Loquacious-PD (Loqs-PD), a dsRNA-binding protein that associates with Dicer-2, is required for processing of a subset of RNA substrates including hairpin RNAs into siRNAs. Inorganic phosphate-a small molecule present in all cell types-inhibits Dicer-2 from processing precursor of microRNAs (pre-miRNAs), which are processed by Dicer-1. Whether or how Loqs-PD modulates the inhibitory effect of inorganic phosphate on Dicer-2 processing of RNA substrates is unknown. To address this question, I performed in vitro hairpin RNA processing assay with Dicer-2 in the presence or absence of Loqs-PD and/or inorganic phosphate. I found that inorganic phosphate inhibits Dicer-2 alone, but not Dicer-2 + Loqs-PD, from processing blunt-end hairpin RNAs into siRNAs. Thus, Loqs-PD removes the inhibitory effect of inorganic phosphate on Dicer-2 processing of blunt-end hairpin RNAs, allowing siRNA production in the presence of inorganic phosphate.


Asunto(s)
Proteínas de Drosophila/metabolismo , Fosfatos/farmacología , ARN Helicasas/metabolismo , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/fisiología , Ribonucleasa III/metabolismo , Animales , Drosophila , Proteínas de Drosophila/antagonistas & inhibidores , MicroARNs/metabolismo , ARN Helicasas/antagonistas & inhibidores , Ribonucleasa III/antagonistas & inhibidores
12.
J Struct Funct Genomics ; 16(1): 25-41, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25618148

RESUMEN

The putative translation elongation factor Mbar_A0971 from the methanogenic archaeon Methanosarcina barkeri was proposed to be the pyrrolysine-specific paralogue of EF-Tu ("EF-Pyl"). In the present study, the crystal structures of its homologue from Methanosarcina mazei (MM1309) were determined in the GMPPNP-bound, GDP-bound, and apo forms, by the single-wavelength anomalous dispersion phasing method. The three MM1309 structures are quite similar (r.m.s.d. < 0.1 Å). The three domains, corresponding to domains 1, 2, and 3 of EF-Tu/SelB/aIF2γ, are packed against one another to form a closed architecture. The MM1309 structures resemble those of bacterial/archaeal SelB, bacterial EF-Tu in the GTP-bound form, and archaeal initiation factor aIF2γ, in this order. The GMPPNP and GDP molecules are visible in their co-crystal structures. Isothermal titration calorimetry measurements of MM1309·GTP·Mg(2+), MM1309·GDP·Mg(2+), and MM1309·GMPPNP·Mg(2+) provided dissociation constants of 0.43, 26.2, and 222.2 µM, respectively. Therefore, the affinities of MM1309 for GTP and GDP are similar to those of SelB rather than those of EF-Tu. Furthermore, the switch I and II regions of MM1309 are involved in domain-domain interactions, rather than nucleotide binding. The putative binding pocket for the aminoacyl moiety on MM1309 is too small to accommodate the pyrrolysyl moiety, based on a comparison of the present MM1309 structures with that of the EF-Tu·GMPPNP·aminoacyl-tRNA ternary complex. A hydrolysis protection assay revealed that MM1309 binds cysteinyl (Cys)-tRNA(Cys) and protects the aminoacyl bond from non-enzymatic hydrolysis. Therefore, we propose that MM1309 functions as either a guardian protein that protects the Cys moiety from oxidation or an alternative translation factor for Cys-tRNA(Cys).


Asunto(s)
Proteínas Arqueales/química , Guanosina Trifosfato/química , Methanosarcina/química , ARN de Transferencia de Cisteína/química , Secuencia de Aminoácidos , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Calorimetría , Cristalografía por Rayos X , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Guanilil Imidodifosfato/química , Guanilil Imidodifosfato/metabolismo , Cinética , Methanosarcina/genética , Methanosarcina/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Conformación de Ácido Nucleico , Factor Tu de Elongación Peptídica/química , Factor Tu de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/metabolismo , Factores de Elongación de Péptidos/química , Factores de Elongación de Péptidos/genética , Factores de Elongación de Péptidos/metabolismo , Factores de Iniciación de Péptidos/química , Factores de Iniciación de Péptidos/genética , Factores de Iniciación de Péptidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , ARN de Transferencia de Cisteína/metabolismo , Homología de Secuencia de Aminoácido
13.
EMBO J ; 28(5): 545-55, 2009 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-19165150

RESUMEN

In plants, SGS3 and RNA-dependent RNA polymerase 6 (RDR6) are required to convert single- to double-stranded RNA (dsRNA) in the innate RNAi-based antiviral response and to produce both exogenous and endogenous short-interfering RNAs. Although a role for RDR6-catalysed RNA-dependent RNA polymerisation in these processes seems clear, the function of SGS3 is unknown. Here, we show that SGS3 is a dsRNA-binding protein with unexpected substrate selectivity favouring 5'-overhang-containing dsRNA. The conserved XS and coiled-coil domains are responsible for RNA-binding activity. Furthermore, we find that the V2 protein from tomato yellow leaf curl virus, which suppresses the RNAi-based host immune response, is a dsRNA-binding protein with similar specificity to SGS3. In competition-binding experiments, V2 outcompetes SGS3 for substrate dsRNA recognition, whereas a V2 point mutant lacking the suppressor function in vivo cannot efficiently overcome SGS3 binding. These findings suggest that SGS3 recognition of dsRNA containing a 5' overhang is required for subsequent steps in RNA-mediated gene silencing in plants, and that V2 functions as a viral suppressor by preventing SGS3 from accessing substrate RNAs.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Interferencia de ARN/fisiología , ARN Bicatenario/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Virales/metabolismo , Región de Flanqueo 5' , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Begomovirus/metabolismo , Unión Competitiva , Ensayo de Cambio de Movilidad Electroforética , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Mutación Puntual , Unión Proteica , Multimerización de Proteína , Proteínas de Unión al ARN/metabolismo , ARN Polimerasa Dependiente del ARN/genética , Especificidad por Sustrato , Proteínas Virales/genética
14.
bioRxiv ; 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38014251

RESUMEN

Hypertrophic cardiomyopathy (HCM) results from pathogenic variants in sarcomeric protein genes, that increase myocyte energy demand and lead to cardiac hypertrophy. But it is unknown whether a common metabolic trait underlies the cardiac phenotype at early disease stage. This study characterized two HCM mouse models (R92W-TnT, R403Q-MyHC) that demonstrate differences in mitochondrial function at early disease stage. Using a combination of cardiac phenotyping, transcriptomics, mass spectrometry-based metabolomics and computational modeling, we discovered allele-specific differences in cardiac structure/function and metabolic changes. TnT-mutant hearts had impaired energy substrate metabolism and increased phospholipid remodeling compared to MyHC-mutants. TnT-mutants showed increased incorporation of saturated fatty acid residues into ceramides, cardiolipin, and increased lipid peroxidation, that could underlie allele-specific differences in mitochondrial function and cardiomyopathy.

15.
Nat Struct Mol Biol ; 14(4): 272-9, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17351629

RESUMEN

Cysteine is ligated to tRNA(Cys) by cysteinyl-tRNA synthetase in most organisms. However, in methanogenic archaea lacking cysteinyl-tRNA synthetase, O-phosphoserine is ligated to tRNA(Cys) by O-phosphoseryl-tRNA synthetase (SepRS), and the phosphoseryl-tRNA(Cys) is converted to cysteinyl-tRNA(Cys). In this study, we determined the crystal structure of the SepRS tetramer in complex with tRNA(Cys) and O-phosphoserine at 2.6-A resolution. The catalytic domain of SepRS recognizes the negatively charged side chain of O-phosphoserine at a noncanonical site, using the dipole moment of a conserved alpha-helix. The unique C-terminal domain specifically recognizes the anticodon GCA of tRNA(Cys). On the basis of the structure, we engineered SepRS to recognize tRNA(Cys) mutants with the anticodons UCA and CUA and clarified the anticodon recognition mechanism by crystallography. The mutant SepRS-tRNA pairs may be useful for translational incorporation of O-phosphoserine into proteins in response to the stop codons UGA and UAG.


Asunto(s)
Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Archaeoglobus fulgidus/enzimología , Cisteína/biosíntesis , ARN de Archaea/metabolismo , Secuencia de Aminoácidos , Anticodón/genética , Evolución Biológica , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fosfoserina/metabolismo , Ingeniería de Proteínas , Estructura Secundaria de Proteína , ARN de Transferencia de Cisteína/metabolismo
16.
Proc Natl Acad Sci U S A ; 106(21): 8489-94, 2009 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-19423669

RESUMEN

Alanyl-tRNA synthetase (AlaRS) specifically recognizes the major identity determinant, the G3:U70 base pair, in the acceptor stem of tRNA(Ala) by both the tRNA-recognition and editing domains. In this study, we solved the crystal structures of 2 halves of Archaeoglobus fulgidus AlaRS: AlaRS-DeltaC, comprising the aminoacylation, tRNA-recognition, and editing domains, and AlaRS-C, comprising the dimerization domain. The aminoacylation/tRNA-recognition domains contain an insertion incompatible with the class-specific tRNA-binding mode. The editing domain is fixed tightly via hydrophobic interactions to the aminoacylation/tRNA-recognition domains, on the side opposite from that in threonyl-tRNA synthetase. A groove formed between the aminoacylation/tRNA-recognition domains and the editing domain appears to be an alternative tRNA-binding site, which might be used for the aminoacylation and/or editing reactions. Actually, the amino acid residues required for the G3:U70 recognition are mapped in this groove. The dimerization domain consists of helical and globular subdomains. The helical subdomain mediates dimerization by forming a helix-loop-helix zipper. The globular subdomain, which is important for the aminoacylation and editing activities, has a positively-charged face suitable for tRNA binding.


Asunto(s)
Alanina-ARNt Ligasa/química , Alanina-ARNt Ligasa/metabolismo , Multimerización de Proteína , Alanina-ARNt Ligasa/genética , Aminoacilación , Archaeoglobus fulgidus/enzimología , Archaeoglobus fulgidus/genética , Cristalografía por Rayos X , Modelos Moleculares , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , ARN de Transferencia/química , ARN de Transferencia/metabolismo
17.
Sci Rep ; 11(1): 13163, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34162896

RESUMEN

Hypertrophic cardiomyopathy (HCM) is characterized by phenotypic heterogeneity. We investigated the molecular basis of the cardiac phenotype in two mouse models at established disease stage (mouse-HCM), and human myectomy tissue (human-HCM). We analyzed the transcriptome in 2 mouse models with non-obstructive HCM (R403Q-MyHC, R92W-TnT)/littermate-control hearts at 24 weeks of age, and in myectomy tissue of patients with obstructive HCM/control hearts (GSE36961, GSE36946). Additionally, we examined myocyte redox, cardiac mitochondrial DNA copy number (mtDNA-CN), mt-respiration, mt-ROS generation/scavenging and mt-Ca2+ handling in mice. We identified distinct allele-specific gene expression in mouse-HCM, and marked differences between mouse-HCM and human-HCM. Only two genes (CASQ1, GPT1) were similarly dysregulated in both mutant mice and human-HCM. No signaling pathway or transcription factor was predicted to be similarly dysregulated (by Ingenuity Pathway Analysis) in both mutant mice and human-HCM. Losartan was a predicted therapy only in TnT-mutant mice. KEGG pathway analysis revealed enrichment for several metabolic pathways, but only pyruvate metabolism was enriched in both mutant mice and human-HCM. Both mutant mouse myocytes demonstrated evidence of an oxidized redox environment. Mitochondrial complex I RCR was lower in both mutant mice compared to controls. MyHC-mutant mice had similar mtDNA-CN and mt-Ca2+ handling, but TnT-mutant mice exhibited lower mtDNA-CN and impaired mt-Ca2+ handling, compared to littermate-controls. Molecular profiling reveals differences in gene expression, transcriptional regulation, intracellular signaling and mt-number/function in 2 mouse models at established disease stage. Further studies are needed to confirm differences in gene expression between mouse and human-HCM, and to examine whether cardiac phenotype, genotype and/or species differences underlie the divergence in molecular profiles.


Asunto(s)
Cardiomiopatía Hipertrófica/genética , Transcriptoma , Animales , Miosinas Cardíacas/genética , Cardiomiopatía Hipertrófica/complicaciones , Cardiomiopatía Hipertrófica/diagnóstico por imagen , Cardiomiopatía Hipertrófica/metabolismo , Proteínas Portadoras/genética , Modelos Animales de Enfermedad , Ecocardiografía , Regulación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Ratones , Ratones Transgénicos , Mitocondrias Cardíacas/metabolismo , Mutación Missense , Miocardio/metabolismo , Cadenas Pesadas de Miosina/genética , Fenotipo , Mutación Puntual , ARN Mensajero/genética , Especificidad de la Especie , Troponina T/genética , Obstrucción del Flujo Ventricular Externo/etiología , Obstrucción del Flujo Ventricular Externo/genética
18.
Nat Struct Mol Biol ; 12(10): 915-22, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16155584

RESUMEN

Leucyl-tRNA synthetase (LeuRS) specifically recognizes the characteristic long variable arm and the discriminator base, A73, of tRNA(Leu) in archaea and eukarya. The LeuRS 'editing domain' hydrolyzes misformed noncognate aminoacyl-tRNA. Here we report the crystal structure of the archaeal Pyrococcus horikoshii LeuRS-tRNA(Leu) complex. The protruding C-terminal domain of LeuRS specifically recognizes the bases at the tip of the long variable arm. The editing domain swings from its tRNA-free position to avoid clashing with the tRNA. Consequently the tRNA CCA end can bend and reach the aminoacylation active site. The tRNA 3' region assumes two distinct conformations that allow A73 to be specifically recognized in different ways. One conformation is the canonical 'aminoacylation state.' The other conformation seems to be the 'intermediate state,' where the misaminoacylated 3' end has partially relocated to the editing domain.


Asunto(s)
Leucina-ARNt Ligasa/química , Nucleótidos/química , Pyrococcus horikoshii/enzimología , ARN de Transferencia de Leucina/química , Aminoacilación de ARN de Transferencia , Secuencia de Aminoácidos , Secuencia de Bases , Cristalografía por Rayos X , Leucina-ARNt Ligasa/metabolismo , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Nucleótidos/metabolismo , Conformación Proteica , Pyrococcus horikoshii/genética , ARN de Transferencia de Leucina/metabolismo
19.
Nat Struct Mol Biol ; 12(10): 923-30, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16155583

RESUMEN

Leucyl-tRNA synthetase (LeuRS) has a specific post-transfer editing activity directed against mischarged isoleucine and similar noncognate amino acids. We describe the post-transfer-editing and product complexes of Thermus thermophilus LeuRS (LeuRSTT) with tRNA(Leu) at 2.9- to 3.3-A resolution. In the post-transfer-editing configuration, A76 binds in the editing active site exactly as previously found for the adenosine moiety of a small-molecule editing-substrate analog. The 60 C-terminal residues of LeuRSTT, unseen in previous structures, fold into a compact domain flexibly linked to the rest of the molecule and interacting with the G19-C56 tertiary base pair of tRNA(Leu). LeuRS recognition of tRNA(Leu) depends essentially on tRNA shape rather than base-specific interactions. The structures show that considerable domain rotations, notably of the editing domain, accompany the tRNA-3' end dynamics associated successively with aminoacylation, post-transfer editing and product release.


Asunto(s)
Edición de ARN , Aminoacil-ARN de Transferencia/química , ARN de Transferencia de Leucina/química , Thermus thermophilus/enzimología , Thermus thermophilus/genética , Aminoacilación de ARN de Transferencia , Secuencia de Aminoácidos , Secuencia de Bases , Cristalografía por Rayos X , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Conformación Proteica
20.
Nat Commun ; 10(1): 1074, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30824694

RESUMEN

The originally published version of this Article contained an error in Figure 1a, in which the length of the protein fragment produced by the MARF1 null allele was incorrectly labelled as '34aa' rather than the corrected '103aa'.Also, the second sentence of the third paragraph of the Results originally read 'The MARF1null allele has a 241-nt-long deletion introduced at proximal to the N-terminal end of the protein, which produced a premature stop codon, resulting in production of the N-terminal 34 aa fragment of MARF1 (Fig. 1a).' In the corrected version, '34aa' is replaced by '103aa'.These errors have now been corrected in both the PDF and the HTML versions of the Article.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda