Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Int J Mol Sci ; 23(22)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36430318

RESUMEN

The role of membrane lipids is increasingly claimed to explain biological activities of natural amphiphile molecules. To decipher this role, biophysical studies with biomimetic membrane models are often helpful to obtain insights at the molecular and atomic levels. In this review, the added value of biophysics to study lipid-driven biological processes is illustrated using the case of surfactins, a class of natural lipopeptides produced by Bacillus sp. showing a broad range of biological activities. The mechanism of interaction of surfactins with biomimetic models showed to be dependent on the surfactins-to-lipid ratio with action as membrane disturber without membrane lysis at low and intermediate ratios and a membrane permeabilizing effect at higher ratios. These two mechanisms are relevant to explain surfactins' biological activities occurring without membrane lysis, such as their antiviral and plant immunity-eliciting activities, and the one involving cell lysis, such as their antibacterial and hemolytic activities. In both biological and biophysical studies, influence of surfactin structure and membrane lipids on the mechanisms was observed with a similar trend. Hence, biomimetic models represent interesting tools to elucidate the biological mechanisms targeting membrane lipids and can contribute to the development of new molecules for pharmaceutical or agronomic applications.


Asunto(s)
Bacillus , Fenómenos Biológicos , Lipopéptidos/farmacología , Lipopéptidos/química , Biofisica , Lípidos de la Membrana
2.
Molecules ; 27(22)2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36432124

RESUMEN

Vitamin C is one of the most sensitive cosmetic active ingredients. To avoid its degradation, its encapsulation into biobased carriers such as dendrimers is one alternative of interest. In this work, we wanted to evaluate the potential of two biobased glycerodendrimer families (GlyceroDendrimers-Poly(AmidoAmine) (GD-PAMAMs) or GlyceroDendrimers-Poly(Propylene Imine) (GD-PPIs)) as a vitamin C carrier for topical application. The higher encapsulation capacity of GD-PAMAM-3 compared to commercial PAMAM-3 and different GD-PPIs, and its absence of cytotoxicity towards dermal cells, make it a good candidate. Investigation of its mechanism of action was done by using two kinds of biomimetic models of stratum corneum (SC), lipid monolayers and liposomes. GD-PAMAM-3 and VitC@GD-PAMAM-3 (GD-PAMAM-3 with encapsulated vitamin C) can both interact with the lipid representatives of the SC lipid matrix, whichever pH is considered. However, only pH 5.0 is suggested to be favorable to release vitamin C into the SC matrix. Their binding to SC-biomimetic liposomes revealed only a slight effect on membrane permeability in accordance with the absence of cytotoxicity but an increase in membrane rigidity, suggesting a reinforcement of the SC barrier property. Globally, our results suggest that the dendrimer GD-PAMAM-3 could be an efficient carrier for cosmetic applications.


Asunto(s)
Dendrímeros , Humanos , Dendrímeros/farmacología , Dendrímeros/química , Ácido Ascórbico/farmacología , Glicerol , Biomimética , Liposomas , Vitaminas , Lípidos
3.
Int J Mol Sci ; 20(5)2019 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-30813553

RESUMEN

Rhamnolipids (RLs) are potential biocontrol agents for crop culture protection. Their mode of action has been proposed as dual, combining plant protection activation and antifungal activities. The present work focuses on the interaction of natural RLs with plant and fungi membrane models at the molecular scale. Representative models were constructed and the interaction with RLs was studied by Fourier transform infrared (FTIR) and deuterium nuclear magnetic resonance (²H NMR) spectroscopic measurements. Molecular dynamic (MD) simulations were performed to investigate RL insertion in lipid bilayers. Our results showed that the RLs fit into the membrane models and were located near the lipid phosphate group of the phospholipid bilayers, nearby phospholipid glycerol backbones. The results obtained with plant plasma membrane models suggest that the insertion of RLs inside the lipid bilayer did not significantly affect lipid dynamics. Oppositely, a clear fluidity increase of fungi membrane models was observed. This effect was related to the presence and the specific structure of ergosterol. The nature of the phytosterols could also influence the RL effect on plant plasma membrane destabilization. Subtle changes in lipid dynamics could then be linked with plant defense induction and the more drastic effects associated with fungal membrane destabilization.


Asunto(s)
Materiales Biomiméticos/metabolismo , Biofisica , Membrana Celular/metabolismo , Hongos/metabolismo , Glucolípidos/metabolismo , Plantas/metabolismo , Fenómenos Biomecánicos , Glucolípidos/química , Membrana Dobles de Lípidos/metabolismo , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Fosfolípidos/metabolismo
4.
Langmuir ; 30(19): 5518-26, 2014 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-24787144

RESUMEN

Sensory properties of red wine tannins are bound to complex interactions between saliva proteins, membranes taste receptors of the oral cavity, and lipids or proteins from the human diet. Whereas astringency has been widely studied in terms of tannin-saliva protein colloidal complexes, little is known about interactions between tannins and lipids and their implications in the taste of wine. This study deals with tannin-lipid interactions, by mimicking both oral cavity membranes by micrometric size liposomes and lipid droplets in food by nanometric isotropic bicelles. Deuterium and phosphorus solid-state NMR demonstrated the membrane hydrophobic core disordering promoted by catechin (C), epicatechin (EC), and epigallocatechin gallate (EGCG), the latter appearing more efficient. C and EGCG destabilize isotropic bicelles and convert them into an inverted hexagonal phase. Tannins are shown to be located at the membrane interface and stabilize the lamellar phases. These newly found properties point out the importance of lipids in the complex interactions that happen in the mouth during organoleptic feeling when ingesting tannins.


Asunto(s)
Liposomas/química , Taninos/química , Gusto/fisiología , Vino/análisis , Catequina/análogos & derivados , Catequina/química , Humanos , Espectroscopía de Resonancia Magnética
5.
Plants (Basel) ; 9(5)2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32443858

RESUMEN

Some amphiphilic molecules are able to interact with the lipid matrix of plant plasma membranes and trigger the immune response in plants. This original mode of perception is not yet fully understood and biophysical approaches could help to obtain molecular insights. In this review, we focus on such membrane-interacting molecules, and present biophysically grounded methods that are used and are particularly interesting in the investigation of this mode of perception. Rather than going into overly technical details, the aim of this review was to provide to readers with a plant biochemistry background a good overview of how biophysics can help to study molecular interactions between bioactive amphiphilic molecules and plant lipid membranes. In particular, we present the biomimetic membrane models typically used, solid-state nuclear magnetic resonance, molecular modeling, and fluorescence approaches, because they are especially suitable for this field of research. For each technique, we provide a brief description, a few case studies, and the inherent limitations, so non-specialists can gain a good grasp on how they could extend their toolbox and/or could apply new techniques to study amphiphilic bioactive compound and lipid interactions.

6.
Biochimie ; 130: 41-48, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27402289

RESUMEN

Wine tasting results in interactions of tannin-ethanol solutions with proteins and lipids of the oral cavity. Among the various feelings perceived during tasting, astringency and bitterness most probably result in binding events with saliva proteins, lipids and receptors. In this work, we monitored the conjugated effect of the grape polyphenol catechin and ethanol on lipid membranes mimicking the different degrees of keratinization of oral cavity surfaces by varying the amount of cholesterol present in membranes. Both catechin and ethanol fluidify the membranes as evidenced by solid-state 2H NMR of perdeuterated lipids. The effect is however depending on the cholesterol proportion and may be very important and cumulative in the absence of cholesterol or presence of 18 mol % cholesterol. For 40 mol % cholesterol, mimicking highly keratinized membranes, both ethanol and catechin can no longer affect membrane dynamics. These observations can be accounted for by phase diagrams of lipid-cholesterol mixtures and the role played by membrane defects for insertion of tannins and ethanol when several phases coexist. These findings suggest that the behavior of oral membranes in contact with wine should be different depending of their cholesterol content. Astringency and bitterness could be then affected; the former because of a potential competition between the tannin-lipid and the tannin-saliva protein interaction, and the latter because of a possible fluidity modification of membranes containing taste receptors. The lipids that have been up to now weakly considered in oenology may be become a new actor in the issue of wine tasting.


Asunto(s)
Catequina/química , Colesterol/química , Etanol/química , Taninos/química , Vitis/química , Biomimética , Catequina/metabolismo , Colesterol/metabolismo , Dimiristoilfosfatidilcolina/química , Dimiristoilfosfatidilcolina/metabolismo , Etanol/metabolismo , Humanos , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Mucosa Bucal/química , Mucosa Bucal/metabolismo , Espectroscopía de Protones por Resonancia Magnética/métodos , Taninos/metabolismo , Gusto , Termodinámica , Liposomas Unilamelares/química , Liposomas Unilamelares/metabolismo , Vino/análisis
7.
Biochimie ; 107 Pt A: 82-90, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25063276

RESUMEN

Dietary polyphenols widespread in vegetables and beverages like red wine and tea have been reported to possess antioxidant properties that could have positive effects on human health. In this study, we propose a new in situ and non-invasive method based on proton liquid-state nuclear magnetic resonance (NMR) to determine the antioxidant efficiency of red wine tannins on a twice-unsaturated phospholipid, 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (DLiPC), embedded in a membrane model. Four tannins were studied: (+)-catechin (C), (-)-epicatechin (EC), (-)-epicatechin gallate (ECG), and (-)-epigallocatechin gallate (EGCG). The lipid degradation kinetics was determined by measuring the loss of the bis-allylic protons during oxidation induced by a radical initiator, 2,2'-Azobis(2-methylpropionamidine) dihydrochloride (AAPH). The antioxidant efficiency, i.e. the ability of tannins to slow down the lipid oxidation rate, was shown to be higher for galloylated tannins, ECG and EGCG. Furthermore, the mixture of four tannins was more efficient than the most effective tannin, EGCG, demonstrating a synergistic effect. To better understand the antioxidant action mechanism of polyphenols on lipid membranes, the tannin location was investigated by NMR and molecular dynamics. A correlation between antioxidant action of tannins and their location at the membrane interface (inserted at the glycerol backbone level) could thus be established.


Asunto(s)
Catequina/análogos & derivados , Catequina/química , Lípidos de la Membrana/química , Vino , Antioxidantes/química , Antioxidantes/farmacología , Catequina/farmacología , Clorobencenos/química , Clorobencenos/metabolismo , Dimiristoilfosfatidilcolina/química , Dimiristoilfosfatidilcolina/metabolismo , Relación Dosis-Respuesta a Droga , Cinética , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Espectroscopía de Resonancia Magnética , Lípidos de la Membrana/metabolismo , Simulación de Dinámica Molecular , Estructura Molecular , Oxidación-Reducción/efectos de los fármacos , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda