Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Bioorg Chem ; 145: 107223, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387399

RESUMEN

Herein, we envisioned the design and synthesis of novel pyrazolopyrimidines (confirmed by elemental analysis, 1H and 13C NMR, and mass spectra) as multitarget-directed drug candidates acting as EGFR/TOPO II inhibitors, DNA intercalators, and apoptosis inducers. The target diphenyl-tethered pyrazolopyrimidines were synthesized starting from the reaction of phenyl hydrazine and ethoxymethylenemalononitrile to give aminopyrazole-carbonitrile 2. The latter hydrolysis with NaOH and subsequent reaction with 4-chlorobenzaldhyde afforded the corresponding pyrazolo[3,4-d]pyrimidin-4-ol 4. Chlorination of 4 with POCl3 and sequential reaction with different amines afforded the target compounds in good yields (up to 73 %). The growth inhibition % of the new derivatives (6a-m) was investigated against different cancer and normal cells and the IC50 values of the most promising candidates were estimated for HNO97, MDA-MB-468, FaDu, and HeLa cancer cells. The frontier derivatives (6a, 6i, 6k, 6l, and 6m) were pursued for their EGFR inhibitory activity. Compound 6l decreased EGFR protein concentration by a 6.10-fold change, compared to imatinib as a reference standard. On the other side, compounds (6a, 6i, 6k, 6l, and 6m) underwent topoisomerase II (TOPO II) inhibitory assay. In particular, compounds 6a and 6l exhibited IC50s of 17.89 and 19.39 µM, respectively, surpassing etoposide with IC50 of 20.82 µM. Besides, the DNA fragmentation images described the great potential of both candidates 6a and 6l in inducing DNA degradation at lower concentrations compared to etoposide and doxorubicin. Moreover, compound 6l, with the most promising EGFR/TOPO II inhibition and DNA intercalation, was selected for further investigation for its apoptosis induction ability by measuring caspases 3, 7, 8, and 9, Bax, p53, MMP2, MMP9, and BCL-2 proteins. Additionally, molecular docking was used to explain the SAR results based on the differences in the molecular features of the investigated congeners and the target receptors' topology.


Asunto(s)
Antineoplásicos , Compuestos de Bifenilo , Humanos , Estructura Molecular , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular , Antineoplásicos/química , Etopósido/farmacología , ADN-Topoisomerasas de Tipo II/metabolismo , Proliferación Celular , Inhibidores de Topoisomerasa II , Apoptosis , Receptores ErbB/metabolismo , ADN , Ensayos de Selección de Medicamentos Antitumorales
2.
Am J Transplant ; 23(10): 1496-1506, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37735044

RESUMEN

New immunosuppressive therapies that improve long-term graft survival are needed in kidney transplant. Critical Path Institute's Transplant Therapeutics Consortium received a qualification opinion for the iBOX Scoring System as a novel secondary efficacy endpoint for kidney transplant clinical trials through European Medicines Agency's qualification of novel methodologies for drug development. This is the first qualified endpoint for any transplant indication and is now available for use in kidney transplant clinical trials. Although the current efficacy failure endpoint has typically shown the noninferiority of therapeutic regimens, the iBOX Scoring System can be used to demonstrate the superiority of a new immunosuppressive therapy compared to the standard of care from 6 months to 24 months posttransplant in pivotal or exploratory drug therapeutic studies.


Asunto(s)
Trasplante de Riñón , Rechazo de Injerto/etiología , Rechazo de Injerto/prevención & control , Terapia de Inmunosupresión , Inmunosupresores/uso terapéutico , Trasplante de Riñón/efectos adversos , Ensayos Clínicos como Asunto
3.
Transpl Int ; 36: 11951, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37822449

RESUMEN

New immunosuppressive therapies that improve long-term graft survival are needed in kidney transplant. Critical Path Institute's Transplant Therapeutics Consortium received a qualification opinion for the iBOX Scoring System as a novel secondary efficacy endpoint for kidney transplant clinical trials through European Medicines Agency's qualification of novel methodologies for drug development. This is the first qualified endpoint for any transplant indication and is now available for use in kidney transplant clinical trials. Although the current efficacy failure endpoint has typically shown the noninferiority of therapeutic regimens, the iBOX Scoring System can be used to demonstrate the superiority of a new immunosuppressive therapy compared to the standard of care from 6 months to 24 months posttransplant in pivotal or exploratory drug therapeutic studies.


Asunto(s)
Trasplante de Riñón , Humanos , Inmunosupresores/uso terapéutico , Terapia de Inmunosupresión , Rechazo de Injerto/prevención & control
4.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36982742

RESUMEN

Methamphetamine, a highly addictive central nervous system (CNS) stimulant, is used worldwide as an anorexiant and attention enhancer. Methamphetamine use during pregnancy, even at therapeutic doses, may harm fetal development. Here, we examined whether exposure to methamphetamine affects the morphogenesis and diversity of ventral midbrain dopaminergic neurons (VMDNs). The effects of methamphetamine on morphogenesis, viability, the release of mediator chemicals (such as ATP), and the expression of genes involved in neurogenesis were evaluated using VMDNs isolated from the embryos of timed-mated mice on embryonic day 12.5. We demonstrated that methamphetamine (10 µM; equivalent to its therapeutic dose) did not affect the viability and morphogenesis of VMDNs, but it reduced the ATP release negligibly. It significantly downregulated Lmx1a, En1, Pitx3, Th, Chl1, Dat, and Drd1 but did not affect Nurr1 or Bdnf expression. Our results illustrate that methamphetamine could impair VMDN differentiation by altering the expression of important neurogenesis-related genes. Overall, this study suggests that methamphetamine use may impair VMDNs in the fetus if taken during pregnancy. Therefore, it is essential to exercise strict caution for its use in expectant mothers.


Asunto(s)
Estimulantes del Sistema Nervioso Central , Metanfetamina , Efectos Tardíos de la Exposición Prenatal , Humanos , Femenino , Ratones , Animales , Neuronas Dopaminérgicas/metabolismo , Metanfetamina/toxicidad , Metanfetamina/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Mesencéfalo/metabolismo , Estimulantes del Sistema Nervioso Central/farmacología , Adenosina Trifosfato/metabolismo , Diferenciación Celular
5.
J Hum Genet ; 67(7): 381-386, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35046476

RESUMEN

Primary ciliary dyskinesia (PCD) is a clinically and genetically heterogeneous ciliopathy. Dysfunction of motile respiratory and nodal cilia results in sinopulmonary symptoms associated with laterality defects (LD) found in half of the patients. The molecular basis of the disease is insufficiently investigated in patients originating from the Arabian Peninsula. In a group of 16 unrelated Saudi patients clinically suspected of PCD and among whom only 5 (31%) had LD, we first screened by PCR-RFLP two founder mutations, RSPH9 c.804_806del and CCDC39 c.2190del previously identified in patients from the Arabian Peninsula and Tunisia, respectively. When negative, targeted panel or whole-exome sequencing was performed. Three patients were homozygous for the mutation in RSPH9, which encodes an axonemal protein that is absent from nodal cilia. None of the patients carried the CCDC39 founder mutation frequent in Tunisia. NGS analysis showed that nine patients had homozygous mutations in PCD genes. In total, sequential RFLP and NGS analysis solved 75% (12/16) of cases and identified ten distinct mutations, among which six are novel, in nine different genes. These results, which highlight the genetic heterogeneity of PCD in Saudi Arabia, show that the RSPH9 c.804_806del mutation is a prevalent mutation among Saudi patients, whereas the CCDC39 c.2190del ancestral allele is most likely related to the Berber population. This study shows that RSPH9 founder mutation first-line screening and NGS analysis is efficient for the genetic exploration of PCD in Saudi patients. The RSPH9 founder mutation accounts for the low rate of LD among Saudi patients.


Asunto(s)
Proteínas del Citoesqueleto , Síndrome de Kartagener , Proteínas del Citoesqueleto/genética , Efecto Fundador , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Síndrome de Kartagener/diagnóstico , Síndrome de Kartagener/genética , Mutación , Arabia Saudita
6.
Arch Microbiol ; 204(7): 437, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35768665

RESUMEN

In this study, a wild-type and five distinct rifampicin-resistant (Rifr) rpoB mutants of Pseudomonas stutzeri (i.e., Q518R, D521Y, D521V, H531R and I614T) ability were investigated against harsh environments (particularly nutritional complexity). Among these, the robust Rifr phenotype of P. Stutzeri was associated only with base replacements of the amino deposits. The use of carboxylic and amino acids significantly increased in various Rifr mutants than that of wild type of P. stutzeri. The assimilation of carbon and nitrogen (N) sources of Rifr mutants' confirmed that the organism maintains the adaptation in nutritionally complex environments. Acetylene reduction assay at different times also found the variability for N-fixation in all strains. Among them, the highest nitrogenase activity was determined in mutant 'D521V'. The assimilation of carbon and nitrogen sources of P. stutzeri and its Rifr mutants ensures that the organism maintains the adaptability in nutritionally complex environments through fixing more nitrogen.


Asunto(s)
Pseudomonas stutzeri , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carbono/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Mutación , Nitrógeno/metabolismo , Pseudomonas stutzeri/genética , Pseudomonas stutzeri/metabolismo , Rifampin/farmacología
7.
J Enzyme Inhib Med Chem ; 37(1): 2283-2303, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36000168

RESUMEN

New 1H-pyrazolo[3,4-d]pyrimidine derivatives were designed and synthesised to act as epidermal growth factor receptor inhibitors (EGFRIs). The synthesised derivatives were assessed for their in vitro anti-proliferative activities against A549 and HCT-116 cancer cells. Compounds 8, 10, 12a, and 12b showed potent anti-proliferative activities. Compound 12b was the most promising member with IC50 values of 8.21 and 19.56 µM against A549 and HCT-116, respectively. Compounds 8, 10, 12a, and 12b were evaluated for their kinase inhibitory activities against wild EGFR (EGFRWT). Compound 12b was the most potent member showing an IC50 value of 0.016 µM. In addition, compound 12b showed noticeable activity against mutant EGFR (EGFRT790M) (IC50 = 0.236 µM). Flow cytometric analyses revealed that compound 12b is a good apoptotic inducer and can arrest the cell cycle at S and G2/M phases. Furthermore, it produced an 8.8-fold increase in BAX/Bcl-2 ratio. Molecular docking studies were carried out against EGFRWT and EGFRT790M.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Estructura Molecular , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirimidinas/farmacología , Relación Estructura-Actividad
8.
Int J Mol Sci ; 23(20)2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36293205

RESUMEN

The effects of second-generation antipsychotics on prenatal neurodevelopment, apoptotic neurodegeneration, and postnatal developmental delays have been poorly investigated. Even at standard doses, the use of quetiapine fumarate (QEPF) in pregnant women might be detrimental to fetal development. We used primary mouse embryonic neurons to evaluate the disruption of morphogenesis and differentiation of ventral midbrain (VM) neurons after exposure to QEPF. The dopaminergic VM neurons were deliberately targeted due to their roles in cognition, motor activity, and behavior. The results revealed that exposure to QEPF during early brain development decreased the effects of the dopaminergic lineage-related genes Tyrosine hydroxylase(Th), Dopamine receptor D1 (Drd1), Dopamine transporter (Dat), LIM homeobox transcription factor 1 alfa (Lmx1a), and Cell adhesion molecule L1 (Chl1), and the senescent dopaminergic gene Pituitary homeobox 3 (Pitx3). In contrast, Brain derived neurotrophic factor (Bdnf) and Nuclear receptor-related 1 (Nurr1) expressions were significantly upregulated. Interestingly, QEPF had variable effects on the development of non-dopaminergic neurons in VM. An optimal dose of QEPF (10 µM) was found to insignificantly affect the viability of neurons isolated from the VM. It also instigated a non-significant reduction in adenosine triphosphate formation in these neuronal populations. Exposure to QEPF during the early stages of brain development could also hinder the formation of VM and their structural phenotypes. These findings could aid therapeutic decision-making when prescribing 2nd generation antipsychotics in pregnant populations.


Asunto(s)
Molécula L1 de Adhesión de Célula Nerviosa , Efectos Tardíos de la Exposición Prenatal , Embarazo , Ratones , Animales , Femenino , Humanos , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Fumarato de Quetiapina/farmacología , Fumarato de Quetiapina/metabolismo , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Mesencéfalo/metabolismo , Neuronas Dopaminérgicas/metabolismo , Factores de Transcripción/metabolismo , Diferenciación Celular/genética , Adenosina Trifosfato/metabolismo , Receptores Dopaminérgicos/metabolismo
9.
Molecules ; 27(11)2022 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-35684558

RESUMEN

Micronutrient deficiency is a major constraint for the growth, yield and nutritional quality of cowpea which results in nutritional disorders in humans. Micronutrients including molybdenum (Mo), iron (Fe) and zinc (Zn) play a pivotal role in crop nutrition, and their role in different metabolic processes in crops has been highlighted. In order to increase the nutritional quality of cowpea, a field experiment was conducted for two years in which the effect of Mo along with iron (Fe) and zinc (Zn) on productivity, nitrogen and micronutrient uptake, root length and the number of nodules in cowpea cultivation was investigated. It was found that the foliar application of Fe and Zn and their interaction with Mo application through seed priming as well as soil application displayed increased yield, nutrient concentration, uptake and growth parameters which helped to enhance the nutritional quality of cowpea for consumption by the human population. The results of the above experiments revealed that among all the treatments, the soil application of Mo combined with the foliar application of 0.5% each of FeSO4·7H2O and ZnSO4·7H2O (M2F3 treatment) enhanced the grain and stover yield of cowpea, exhibiting maximum values of 1402 and 6104.7 kg ha-1, respectively. Again, the M2F3 treatment resulted in higher Zn, Fe and Mo concentrations in the grain (17.07, 109.3 and 30.26 mg kg-1, respectively) and stover (17.99, 132.7 and 31.22 mg kg-1, respectively) of cowpea. Uptake of Zn, Fe and Mo by the grain (25.23, 153.3 and 42.46 g ha-1, respectively) as well as the stover (104.2, 809.9 and 190.6 g ha-1, respectively) was found to be maximum for the M2F3 treatment. The root length (30.5 cm), number of nodules per plant (73.0) and N uptake in grain and stover (55.39 and 46.15 kg ha-1) were also higher for this treatment. Overall, soil application of Mo along with the foliar application of FeSO4·7H2O (0.5%) and ZnSO4·7H2O (0.5%) significantly improved yield outcomes, concentration, uptake, root length, nodules plant-1 and N uptake of cowpea to alleviate the micronutrient deficiency.


Asunto(s)
Vigna , Zinc , Grano Comestible/química , Humanos , Hierro/metabolismo , Micronutrientes , Molibdeno/metabolismo , Suelo , Triticum/metabolismo , Vigna/metabolismo , Zinc/metabolismo
10.
Molecules ; 27(13)2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35807555

RESUMEN

New Cu(II), Ni(II), Co(II), and Mn(II) complexes of the gabapentin (Gpn) bidentate drug ligand were synthesized and studied using elemental analyses, melting temperatures, molar conductivity, UV-Vis, magnetic measurements, FTIR, and surface morphology (scanning (SEM) and transmission (TEM) electron microscopes).The gabapentin ligand was shown to form monobasic metal:ligand (1:1) stoichiometry complexes with the metal ions Cu(II), Ni(II), Co(II), and Mn(II). Molar conductance measurements in dimethyl-sulfoxide solvent with a concentration of 10-3 M correlated to a non-electrolytic character for all of the produced complexes. A deformed octahedral environment was proposed for all metal complexes. Through the nitrogen atom of the -NH2 group and the oxygen atom of the carboxylate group, the Gpn drug chelated as a bidentate ligand toward the Mn2+, Co2+, Ni2+, and Cu2+ metal ions. This coordination behavior was validated by spectroscopic, magnetic, and electronic spectra using the formulas of the [M(Gpn)(H2O)3(Cl)]·nH2O complexes (where n = 2-6).Transmission electron microscopy was used to examine the nanostructure of the produced gabapentin complexes. Molecular docking was utilized to investigate the comparative interaction between the Gpn drug and its four metal [Cu(II), Ni(II), Co(II), and Mn(II)] complexes as ligands using serotonin (6BQH) and dopamine (6CM4) receptors. AutoDock Vina results were further refined through molecular dynamics simulation, and molecular processes for receptor-ligand interactions were also studied. The B3LYP level of theory and LanL2DZ basis set was used for DFT (density functional theory) studies. The optimized geometries, along with the MEP map and HOMO → LUMO of the metal complexes, were studied.


Asunto(s)
Complejos de Coordinación , Anticonvulsivantes , Complejos de Coordinación/química , Cobre/química , Gabapentina , Iones , Ligandos , Metales/química , Simulación del Acoplamiento Molecular , Bases de Schiff , Espectrofotometría Infrarroja
11.
Molecules ; 27(4)2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35209127

RESUMEN

Globally, many developing countries are facing silent epidemics of nutritional deficiencies in human beings and animals. The lack of diversity in diet, i.e., cereal-based crops deficient in mineral nutrients is an additional threat to nutritional quality. The present review accounts for the significance of biofortification as a process to enhance the productivity of crops and also an agricultural solution to address the issues of nutritional security. In this endeavor, different innovative and specific biofortification approaches have been discussed for nutrient enrichment of field crops including cereals, pulses, oilseeds and fodder crops. The agronomic approach increases the micronutrient density in crops with soil and foliar application of fertilizers including amendments. The biofortification through conventional breeding approach includes the selection of efficient genotypes, practicing crossing of plants with desirable nutritional traits without sacrificing agricultural and economic productivity. However, the transgenic/biotechnological approach involves the synthesis of transgenes for micronutrient re-translocation between tissues to enhance their bioavailability. Soil microorganisms enhance nutrient content in the rhizosphere through diverse mechanisms such as synthesis, mobilization, transformations and siderophore production which accumulate more minerals in plants. Different sources of micronutrients viz. mineral solutions, chelates and nanoparticles play a pivotal role in the process of biofortification as it regulates the absorption rates and mechanisms in plants. Apart from the quality parameters, biofortification also improved the crop yield to alleviate hidden hunger thus proving to be a sustainable and cost-effective approach. Thus, this review article conveys a message for researchers about the adequate potential of biofortification to increase crop productivity and nourish the crop with additional nutrient content to provide food security and nutritional quality to humans and livestock.


Asunto(s)
Biofortificación/métodos , Productos Agrícolas/química , Micronutrientes/análisis , Factores de Edad , Agricultura , Animales , Biotecnología , Fertilizantes , Seguridad Alimentaria , Alimentos Fortificados , Salud Global , Tecnología Química Verde , Humanos , Desnutrición/epidemiología , Desnutrición/etiología , Minerales/análisis , Minerales/química , Nanotecnología , Valor Nutritivo , Fitomejoramiento , Suelo/química
12.
Molecules ; 27(18)2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-36144618

RESUMEN

Poor mood, lack of pleasure, reduced focus, remorse, unpleasant thoughts, and sleep difficulties are all symptoms of depression. The only approved treatment for children and adolescents with major depressive disorder (MDD) is fluoxetine hydrochloride (FXN), a serotonin selective reuptake inhibitor antidepressant. MDD is the most common cause of disability worldwide. In the present research, picric acid (PA); dinitrobenzene; p-nitro benzoic acid; 2,6-dichloroquinone-4-chloroimide; 2,6-dibromoquinone-4-chloroimide; and 7,7',8,8'-tetracyanoquinodimethane were used to make 1:1 FXN charge-transfer compounds in solid and liquid forms. The isolated complexes were then characterized by elemental analysis, conductivity, infrared, Raman, and 1H-NMR spectra, thermogravimetric analysis, scanning electron microscopy, and X-ray powder diffraction. Additionally, a molecular docking investigation was conducted on the donor moiety using FXN alone and the resulting charge transfer complex [(FXN)(PA)] as an acceptor to examine the interactions against two protein receptors (serotonin or dopamine). Interestingly, the [(FXN)(PA)] complex binds to both serotonin and dopamine more effectively than the FXN drug alone. Furthermore, [(FXN)(PA)]-serotonin had a greater binding energy than [FXN]-serotonin. Theoretical data were also generated by density functional theory simulations, which aided the molecular geometry investigation and could be beneficial to researchers in the future.


Asunto(s)
Trastorno Depresivo Mayor , Fluoxetina , Adolescente , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Ácido Benzoico , Niño , Trastorno Depresivo Mayor/tratamiento farmacológico , Dinitrobencenos , Dopamina/metabolismo , Fluoxetina/farmacología , Humanos , Simulación del Acoplamiento Molecular , Picratos , Serotonina/metabolismo , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología
13.
Molecules ; 27(10)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35630766

RESUMEN

The charge transfer interactions between the seproxetine (SRX) donor and π-electron acceptors [picric acid (PA), dinitrobenzene (DNB), p-nitrobenzoic acid (p-NBA), 2,6-dichloroquinone-4-chloroimide (DCQ), 2,6-dibromoquinone-4-chloroimide (DBQ), and 7,7',8,8'-tetracyanoquinodi methane (TCNQ)] were studied in a liquid medium, and the solid form was isolated and characterized. The spectrophotometric analysis confirmed that the charge-transfer interactions between the electrons of the donor and acceptors were 1:1 (SRX: π-acceptor). To study the comparative interactions between SRX and the other π-electron acceptors, molecular docking calculations were performed between SRX and the charge transfer (CT) complexes against three receptors (serotonin, dopamine, and TrkB kinase receptor). According to molecular docking, the CT complex [(SRX)(TCNQ)] binds with all three receptors more efficiently than SRX alone, and [(SRX)(TCNQ)]-dopamine (CTcD) has the highest binding energy value. The results of AutoDock Vina revealed that the molecular dynamics simulation of the 100 ns run revealed that both the SRX-dopamine and CTcD complexes had a stable conformation; however, the CTcD complex was more stable. The optimized structure of the CT complexes was obtained using density functional theory (B-3LYP/6-311G++) and was compared.


Asunto(s)
Antidepresivos , Dopamina , Antidepresivos/farmacología , Electrones , Simulación del Acoplamiento Molecular , Espectrofotometría/métodos
14.
Molecules ; 27(10)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35630772

RESUMEN

Haloperidol (HPL) is a typical antipsychotic drug used to treat acute psychotic conditions, delirium, and schizophrenia. Solid charge transfer (CT) products of HPL with 7,7,8,8-tetracyanoquinodimethane (TCNQ) and picric acid (PA) have not been reported till date. Therefore, we conducted this study to investigate the donor-acceptor CT interactions between HPL (donor) and TCNQ and PA (π-acceptors) in liquid and solid states. The complete spectroscopic and analytical analyses deduced that the stoichiometry of these synthesized complexes was 1:1 molar ratio. Molecular docking calculations were performed for HPL as a donor and the resulting CT complexes with TCNQ and PA as acceptors with two protein receptors, serotonin and dopamine, to study the comparative interactions among them, as they are important neurotransmitters that play a large role in mental health. A molecular dynamics simulation was ran for 100 ns with the output from AutoDock Vina to refine docking results and better examine the molecular processes of receptor-ligand interactions. When compared to the reactant donor, the CT complex [(HPL)(TCNQ)] interacted with serotonin and dopamine more efficiently than HPL only. CT complex [(HPL)(TCNQ)] with dopamine (CTtD) showed the greatest binding energy value among all. Additionally, CTtD complex established more a stable interaction with dopamine than HPL-dopamine.


Asunto(s)
Antipsicóticos , Haloperidol , Antipsicóticos/farmacología , Dopamina , Haloperidol/farmacología , Simulación del Acoplamiento Molecular , Nitrilos , Picratos , Receptores Dopaminérgicos
15.
Am J Transplant ; 21(6): 2231-2239, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33394565

RESUMEN

Progress in deceased donor intervention research has been limited. Development of an in silico model of deceased donor physiology may elucidate potential therapeutic targets and provide an efficient mechanism for testing proposed deceased donor interventions. In this study, we report a preliminary in silico model of deceased kidney donor injury built, calibrated, and validated based on data from published animal and human studies. We demonstrate that the in silico model behaves like animal studies of brain death pathophysiology with respect to upstream markers of renal injury including hemodynamics, oxygenation, cytokines expression, and inflammation. Therapeutic hypothermia, a deceased donor intervention studied in human trials, is performed to demonstrate the model's ability to mimic an established clinical trial. Finally, future directions for developing this concept into a functional, clinically applicable model are discussed.


Asunto(s)
Trasplante de Riñón , Obtención de Tejidos y Órganos , Animales , Muerte Encefálica , Simulación por Computador , Humanos , Donantes de Tejidos
16.
Clin Transplant ; 35(6): e14304, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33792971

RESUMEN

BACKGROUND: Careful donor-recipient matching and reduced ischemia times have improved outcomes following donation after circulatory death (DCD) liver transplantation (LT). This study examines a single-center experience with DCD LT including high-acuity and hospitalized recipients. METHODS: DCD LT outcomes were compared to a propensity score-matched (PSM) donation after brain death (DBD) LT cohort (1:4); 32 DCD LT patients and 128 PSM DBD LT patients transplanted from 2008 to 2018 were included. Analyses included Kaplan-Meier estimates and Cox proportional hazards models examining patient and graft survival. RESULTS: Median MELD score in the DCD LT cohort was 22, with median MELD of 27 for DCD LT recipients with decompensated cirrhosis. No difference in mortality or graft loss was found (p < .05) between DCD LT and PSM DBD LT at 3 years post-transplant, nor was DCD an independent risk factor for patient or graft survival. Post-LT severe acute kidney injury was similar in both groups. Ischemic-type biliary lesions (ITBL) occurred in 6.3% (n = 2) of DCD LT recipients, resulting in 1 graft loss and 1 death. CONCLUSION: This study supports that DCD LT outcomes can be similar to DBD LT, with a low rate of ITBL, in a cohort including high-acuity recipients. Strict donor selection criteria, ischemia time minimization, and avoiding futile donor/recipient combinations are essential considerations.


Asunto(s)
Trasplante de Hígado , Obtención de Tejidos y Órganos , Muerte Encefálica , Muerte , Supervivencia de Injerto , Humanos , Puntaje de Propensión , Estudios Retrospectivos , Donantes de Tejidos , Resultado del Tratamiento
17.
Andrologia ; 53(5): e14036, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33724537

RESUMEN

In agriculture, gibberellic acid (GA3) is commonly used with extreme dangers for public health. The current research evaluates the improving effects of n-acetyl cysteine (NAC, 150 mg/kg bw) co-administered with GA3 (55 mg/kg bw) mediated testicular injury. Twenty-four male albino rats were split into 4 groups: Negative control (CNT), NAC group, positive GA3 group and protective group, co-administered NAC plus GA3. On day 21, rats were anesthetised then euthanised by decapitation. Blood samples were collected; testicular samples were taken for semen analysis, serum chemistry, RNA extraction, histological and antioxidants markers examination. Our results revealed a significant decline p < .05 of catalase level and total antioxidant capacity. There was a substantial rise of MDA concentration in GA3-treated rats along with a considerable decrease of the antioxidant markers (SOD, GSH) and serum male reproductive hormones. In GA3-treated rats, an overexpression of the inflammatory cytokines (TNF-α, IL-1ß) and anti-inflammatory cytokine IL-10 with boost mRNA expression of nuclear factor-kappa (NFk B) were confirmed. There was downregulation of steroidogenesis genes and decrease in sperm quality and concentration with an increase in sperm abnormalities, all were reported in GA3-treated rats. NAC treatment significantly increased the antioxidant state, testicular function beside structural germ cell and seminiferous tubules histology accompanied by upsurge of steroidogenic mRNA expressions (P450scc and 3ß-HSD) and downregulated the pro-inflammatory cytokines mRNA expression (TNF-α, IL-1ß). These results confirm the antioxidant capability of NAC and afford robust evidence about the ameliorative effect of the NAC to attenuate the testicular injury induced by GA3 through modulation of the antioxidant defence system, steroidogenic and pro-inflammatory cytokines mRNA expression.


Asunto(s)
Acetilcisteína , Antioxidantes , Acetilcisteína/farmacología , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Citocinas/genética , Citocinas/metabolismo , Giberelinas , Masculino , Estrés Oxidativo , Ratas , Esteroides/metabolismo , Testículo/metabolismo
18.
Arch Pharm (Weinheim) ; : e2100258, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34467546

RESUMEN

Targeting the epidermal growth factor receptors (EGFRs) with small inhibitor molecules has been validated as a potential therapeutic strategy in cancer therapy. Pyrazolo[3,4-d]pyrimidine is a versatile scaffold that has been exploited for developing potential anticancer agents. On the basis of fragment-based drug discovery, considering the essential pharmacophoric features of potent EGFR tyrosine kinase (TK) inhibitors, herein, we report the design and synthesis of new hybrid molecules of the pyrazolo[3,4-d]pyrimidine scaffold linked with diverse pharmacophoric fragments with reported anticancer potential. These fragments include hydrazone, indoline-2-one, phthalimide, thiourea, oxadiazole, pyrazole, and dihydropyrazole. The synthesized molecules were evaluated for their anticancer activity against the human breast cancer cell line, MCF-7. The obtained results revealed comparable antitumor activity with that of the reference drugs doxorubicin and toceranib. Docking studies were performed along with EGFR-TK and ADMET profiling studies. The results of the docking studies showed the ability of the designed compounds to interact with key residues of the EGFR-TK through a number of covalent and noncovalent interactions. The obtained activity of compound 25 (IC50 = 2.89 µM) suggested that it may serve as a lead for further optimization and drug development.

19.
Molecules ; 26(21)2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34771108

RESUMEN

To achieve the nutritional target of human food, boron (B) has been described as an essential mineral in determining seed and theoretical oil yield of Sesamum indicum L. The research to increase its cultivation is garnering attention due to its high oil content, quality and its utilization for various purposes, which include human nutrition as well as its use in the food industry. For this, a two-year field experiment was performed at PAU, Punjab, India to determine the effect of different concentrations of foliar-applied B (20, 30 and 40 mg L-1) and different growth stages of crop, i.e., we measured the effects on agroeconomic indicators and certain quality parameters of sesame using different concentrations of B applied at the flowering and capsule formation stages as compared to using water spray and untreated plants. Water spray did not significantly affect the studied parameters. However, B application significantly increased the yield, uptake, antioxidant activity (AOA) and theoretical oil content (TOC) compared to those of untreated plants. The maximum increase in seed yield (26.75%), B seed and stover uptake (64.08% and 69.25%, respectively) as well as highest AOA (69.41%) and benefit to cost ratio (B:C ratio 2.63) was recorded when B was applied at 30 mg L-1 at the flowering and capsule formation stages. However, the maximum sesame yield and B uptake were recorded when B was applied at a rate of 30 mg L-1. A significant increase in TOC was also recorded with a B application rate of 30 mg L-1. For efficiency indices, the higher values of boron agronomic efficiency (BAE) and boron crop recovery efficiency (BCRE) were recorded when B was applied at 20 mg L-1 (5.25 and 30.56, respectively) and 30 mg L-1 (4.96 and 26.11, respectively) at the flowering and capsule formation stages. In conclusion, application of B @ 30 mg L-1 at the flowering and capsule formation stages seemed a viable technique to enhance yield, B uptake and economic returns of sesame.


Asunto(s)
Agricultura/economía , Boro/metabolismo , Desarrollo de la Planta , Sesamum/crecimiento & desarrollo , Sesamum/metabolismo , Algoritmos , Fenómenos Químicos , Minerales , Modelos Económicos , Modelos Teóricos , Aceite de Sésamo/análisis , Aceite de Sésamo/química
20.
Molecules ; 26(24)2021 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-34946758

RESUMEN

Biofortification of pulse crops with Zn and Fe is a viable approach to combat their widespread deficiencies in humans. Lentil (Lens culinaris Medik.) is a widely consumed edible crop possessing a high level of Zn and Fe micronutrients. Thus, the present study was conducted to examine the influence of foliar application of Zn and Fe on productivity, concentration, uptake and the economics of lentil cultivation (LL 931). For this, different treatment combinations of ZnSO4·7H2O (0.5%) and FeSO4·7H2O (0.5%), along with the recommended dose of fertilizer (RDF), were applied to the lentil. The results of study reported that the combined foliar application of ZnSO4·7H2O (0.5%) + FeSO4·7H2O (0.5%) at pre-flowering (S1) and pod formation (S2) stages was most effective in enhancing grain and straw yield, Zn and Fe concentration, and uptake. However, the outcome of this treatment was statistically on par with the results obtained under the treatment ZnSO4·7H2O (0.5%) + FeSO4·7H2O (0.5%) at S1 stage. A single spray of ZnSO4·7H2O (0.5%) + FeSO4·7H2O (0.5%) at S1 stage enhanced the grain and straw yield up to 39.6% and 51.8%, respectively. Similarly, Zn and Fe concentrations showed enhancement in grain (10.9% and 20.4%, respectively) and straw (27.5% and 27.6% respectively) of the lentil. The increase in Zn and Fe uptake by grain was 54.8% and 68.0%, respectively, whereas uptake by straw was 93.6% and 93.7%, respectively. Also the benefit:cost was the highest (1.96) with application of ZnSO4·7H2O (0.5%) + FeSO4·7H2O (0.5%) at S1 stage. Conclusively, the combined use of ZnSO4·7H2O (0.5%) + FeSO4·7H2O (0.5%) at S1 stage can contribute significantly towards yield, Zn and Fe concentration, as well as uptake and the economic returns of lentil to remediate the Zn and Fe deficiency.


Asunto(s)
Grano Comestible/efectos de los fármacos , Compuestos Ferrosos/farmacología , Fertilizantes/análisis , Lens (Planta)/efectos de los fármacos , Micronutrientes/farmacología , Sulfato de Zinc/farmacología , Biofortificación , Grano Comestible/metabolismo , Compuestos Ferrosos/química , Compuestos Ferrosos/metabolismo , Lens (Planta)/metabolismo , Micronutrientes/química , Micronutrientes/metabolismo , Sulfato de Zinc/química , Sulfato de Zinc/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda