Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Publication year range
1.
Hum Brain Mapp ; 45(5): e26658, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38520368

RESUMEN

Cognitive reserve (CR) explains differential susceptibility of cognitive performance to neuropathology. However, as brain pathologies progress, cognitive decline occurs even in individuals with initially high CR. The interplay between the structural brain health (= level of brain reserve) and CR-related brain networks therefore requires further research. Our sample included 142 individuals aged 60-70 years. National Adult Reading Test intelligence quotient (NART-IQ) was our CR proxy. On an in-scanner Letter Sternberg task, we used ordinal trend (OrT) analysis to extract a task-related brain activation pattern (OrT slope) for each participant that captures increased expression with task load (one, three, and six letters). We assessed whether OrT slope represents a neural mechanism underlying CR by associating it with task performance and NART-IQ. Additionally, we investigated how the following brain reserve measures affect the association between NART-IQ and OrT slope: mean cortical thickness, total gray matter volume, and brain volumes proximal to the areas contained in the OrT patterns. We found that higher OrT slope was associated with better task performance and higher NART-IQ. Further, the brain reserve measures were not directly associated with OrT slope, but they affected the relationship between NART-IQ and OrT slope: NART-IQ was associated with OrT slope only in individuals with high brain reserve. The degree of brain reserve has an impact on how (and perhaps whether) CR can be implemented in brain networks in older individuals.


Asunto(s)
Reserva Cognitiva , Adulto , Humanos , Anciano , Reserva Cognitiva/fisiología , Pruebas de Inteligencia , Encéfalo/diagnóstico por imagen , Escalas de Wechsler , Mapeo Encefálico
2.
Genes (Basel) ; 14(9)2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37761954

RESUMEN

Genome-wide association studies have discovered common genetic variants associated with cognitive performance. Polygenic scores that summarize these discoveries explain up to 10% of the variance in cognitive test performance in samples of adults. However, the role these genetics play in cognitive aging is not well understood. We analyzed data from 168 cognitively healthy participants aged 23-77 years old, with data on genetics, neuropsychological assessment, and brain-imaging measurements from two large ongoing studies, the Reference Abilities Neural Networks, and the Cognitive Reserve study. We tested whether a polygenic index previously related to cognition (Cog PGI) would moderate the relationship between age and measurements of the cognitive domains extracted from a neuropsychological evaluation: fluid reasoning, memory, vocabulary, and speed of processing. We further explored the relationship of Cog PGI and age on cognition using Johnson-Neyman intervals for two-way interactions. Sex, education, and brain measures of cortical thickness, total gray matter volume, and white matter hyperintensity were considered covariates. The analysis controlled for population structure-ancestry. There was a significant interaction effect of Cog PGI on the association between age and the domains of memory (Standardized coefficient = -0.158, p-value = 0.022), fluid reasoning (Standardized coefficient = -0.146, p-value = 0.020), and vocabulary (Standardized coefficient = -0.191, p-value = 0.001). Higher PGI strengthened the negative relationship between age and the domains of memory and fluid reasoning while PGI weakened the positive relationship between age and vocabulary. Based on the Johnson-Neyman intervals, Cog PGI was significantly associated with domains of memory, reasoning, and vocabulary for younger adults. There is a significant moderation effect of genetic predisposition for cognition for the association between age and cognitive performance. Genetics discovered in genome-wide association studies of cognitive performance show a stronger association in young and midlife older adults.


Asunto(s)
Envejecimiento , Estudio de Asociación del Genoma Completo , Humanos , Anciano , Adulto Joven , Adulto , Persona de Mediana Edad , Envejecimiento/genética , Envejecimiento/psicología , Encéfalo/diagnóstico por imagen , Cognición , Herencia Multifactorial/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda