Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Plant Mol Biol ; 96(1-2): 53-67, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29119346

RESUMEN

KEY MESSAGE: ncRNA PN_LNC_N13 shows contrasting expression in reproductive organs of sexual and apomictic Paspalum notatum genotypes. Apomictic plants set genetically maternal seeds whose embryos derive by parthenogenesis from unreduced egg cells, giving rise to clonal offspring. Several Paspalum notatum apomixis related genes were identified in prior work by comparative transcriptome analyses. Here, one of these candidates (namely N13) was characterized. N13 belongs to a Paspalum gene family including 30-60 members, of which at least eight are expressed at moderate levels in florets. The sequences of these genes show no functional ORFs, but include segments of different protein coding genes. Particularly, N13 shows partial identity to maize gene BT068773 (RESPONSE REGULATOR 6). Secondary structure predictions as well as mature miRNA and target cleavage detection suggested that N13 is not a miRNA precursor. Moreover, N13 family members produce abundant 24-nucleotide small RNAs along extensive parts of their sequences. Surveys in the GREENC and CANTATA databases indicated similarity with plant long non-coding RNAs (lncRNAs) involved in splicing regulation; consequently, N13 was renamed as PN_LNC_N13. The Paspalum BT068773 predicted ortholog (N13TAR) originates floral transcript variants shorter than the canonical maize isoform and with possible structural differences between the apomictic and sexual types. PN_LNC_N13 is expressed only in apomictic plants and displays quantitative representation variation across reproductive developmental stages. However, PN_LNC_N13-like homologs and/or its derived sRNAs showed overall a higher representation in ovules of sexual plants at late premeiosis. Our results suggest the existence of a whole family of N13-like lncRNAs possibly involved in splicing regulation, with some members characterized by differential activity across reproductive types.


Asunto(s)
ARN Largo no Codificante/genética , Semillas/fisiología , Apomixis/genética , Apomixis/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Genotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Semillas/genética
2.
Food Technol Biotechnol ; 55(1): 29-39, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28559731

RESUMEN

The orzo Agordino is a very old local variety of domesticated barley (Hordeum vulgare ssp. distichum L.) that is native to the Agordo District, Province of Belluno, and is widespread in the Veneto Region, Italy. Seeds of this landrace are widely used for the preparation of very famous dishes of the dolomitic culinary tradition such as barley soup, bakery products and local beer. Understanding the genetic diversity and identity of the Agordino barley landrace is a key step to establish conservation and valorisation strategies of this local variety and also to provide molecular traceability tools useful to ascertain the authenticity of its derivatives. The gene pool of the Agordino barley landrace was reconstructed using 60 phenotypically representative individual plants and its genotypic relationships with commercial varieties were investigated using 21 pure lines widely cultivated in the Veneto Region. For genomic DNA analysis, following an initial screening of 14 mapped microsatellite (SSR) loci, seven discriminant markers were selected on the basis of their genomic position across linkage groups and polymorphic marker alleles per locus. The genetic identity of the local barley landrace was determined by analysing all SSR markers in a single multi-locus PCR assay. Extent of genotypic variation within the Agordino barley landrace and the genotypic differentiation between the landrace individuals and the commercial varieties was determined. Then, as few as four highly informative SSR loci were selected and used to develop a molecular traceability system exploitable to verify the genetic authenticity of food products deriving from the Agordino landrace. This genetic authentication assay was validated using both DNA pools from individual Agordino barley plants and DNA samples from Agordino barley food products. On the whole, our data support the usefulness and robustness of this DNA-based diagnostic tool for the orzo Agordino identification, which could be rapidly and efficiently exploited to guarantee the authenticity of local varieties and the typicality of food products.

3.
BMC Genomics ; 16: 254, 2015 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-25887758

RESUMEN

BACKGROUND: St. John's wort (Hypericum perforatum L.) is a medicinal plant that produces important metabolites with antidepressant and anticancer activities. Recently gained biological information has shown that this species is also an attractive model system for the study of a naturally occurring form of asexual reproduction called apomixis, which allows cloning plants through seeds. In aposporic gametogenesis, one or multiple somatic cells belonging to the ovule nucellus change their fate by dividing mitotically and developing functionally unreduced embryo sacs by mimicking sexual gametogenesis. Although the introduction of apomixis into agronomically important crops could have revolutionary implications for plant breeding, the genetic control of this mechanism of seed formation is still not well understood for most of the model species investigated so far. We used Roche 454 technology to sequence the entire H. perforatum flower transcriptome of whole flower buds and single flower verticils collected from obligately sexual and unrelated highly or facultatively apomictic genotypes, which enabled us to identify RNAs that are likely exclusive to flower organs (i.e., sepals, petals, stamens and carpels) or reproductive strategies (i.e., sexual vs. apomictic). RESULTS: Here we sequenced and annotated the flower transcriptome of H. perforatum with particular reference to reproductive organs and processes. In particular, in our study we characterized approximately 37,000 transcripts found expressed in male and/or female reproductive organs, including tissues or cells of sexual and apomictic flower buds. Ontological annotation was applied to identify major biological processes and molecular functions involved in flower development and plant reproduction. Starting from this dataset, we were able to recover and annotate a large number of transcripts related to meiosis, gametophyte/gamete formation, and embryogenesis, as well as genes that are exclusively or preferentially expressed in sexual or apomictic libraries. Real-Time RT-qPCR assays on pistils and anthers collected at different developmental stages from accessions showing alternative modes of reproduction were used to identify potential genes that are related to plant reproduction sensu lato in H. perforatum. CONCLUSIONS: Our approach of sequencing flowers from two fully obligate sexual genotypes and two unrelated highly apomictic genotypes, in addition to different flower parts dissected from a facultatively apomictic accession, enabled us to analyze the complexity of the flower transcriptome according to its main reproductive organs as well as for alternative reproductive behaviors. Both annotation and expression data provided original results supporting the hypothesis that apomixis in H. perforatum relies upon spatial or temporal mis-expression of genes acting during female sexual reproduction. The present analyses aim to pave the way toward a better understanding of the molecular basis of flower development and plant reproduction, by identifying genes or RNAs that may differentiate or regulate the sexual and apomictic reproductive pathways in H. perforatum.


Asunto(s)
Genes de Plantas , Hypericum/genética , Reproducción Asexuada/genética , Transcriptoma , Apomixis/genética , Secuencia de Bases , Bases de Datos Genéticas , Flores/genética , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Meiosis/genética , Datos de Secuencia Molecular , Desarrollo de la Planta/genética , Proteínas de Plantas/genética , Plantas Medicinales/genética , ARN de Planta/análisis , ARN de Planta/aislamiento & purificación , ARN de Planta/metabolismo , Análisis de Secuencia de ARN
4.
Sci Rep ; 14(1): 869, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195759

RESUMEN

Although male and female mammals differ in biological traits and functional needs, the contribution of this sexual dimorphism to variations in gut bacteria and fungi (gut microbiota) in relation to habitat type has not been fully examined. To understand whether the combination of sex and habitat affects gut microbiota variation, we analyzed 40 fecal samples of wild yellow baboons (Papio cynocephalus) living in contrasting habitat types (intact, well-protected vs. fragmented, less protected forests) in the Udzungwa Mountains of Tanzania. Sex determination was performed using the marker genes SRY (Sex-determining Region Y) and DDX3X-DDX3Y (DEAD-Box Helicase 3). Samples were attributed to 34 individuals (19 females and 15 males) belonging to five social groups. Combining the results of sex determination with two amplicon sequencing datasets on bacterial (V1-V3 region of the 16S rRNA gene) and fungal (ITS2) gut communities, we found that overall, baboon females had a significantly higher gut bacterial richness compared to males. Beta diversity estimates indicated that bacterial composition was significantly different between males and females, and this was true for individuals from both well- and less protected forests. Our results highlight the combined role of sex and habitat type in shaping variation in gut microbial communities in wild non-human primates.


Asunto(s)
Microbioma Gastrointestinal , Papio cynocephalus , Femenino , Masculino , Animales , Papio cynocephalus/genética , Microbioma Gastrointestinal/genética , ARN Ribosómico 16S/genética , Genes sry , Bosques , Papio , Mamíferos
5.
Sci Rep ; 14(1): 8715, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622248

RESUMEN

Metataxonomic studies of ecosystem microbiotas require the simultaneous processing of samples with contrasting physical and biochemical traits. However, there are no published studies of comparisons of different DNA extraction kits to characterize the microbiotas of the main components of terrestrial ecosystems. Here, and to our knowledge for the first time, five DNA extraction kits were used to investigate the composition and diversity of the microbiota of a subset of samples typically studied in terrestrial ecosystems such as bulk soil, rhizosphere soil, invertebrate taxa and mammalian feces. DNA extraction kit was associated with changes in the relative abundance of hundreds of ASVs, in the same samples, resulting in significant differences in alpha and beta diversity estimates of their microbiotas. Importantly, the impact of DNA extraction kit on sample diversity varies according to sample type, with mammalian feces and soil samples showing the most and least consistent diversity estimates across DNA extraction kits, respectively. We show that the MACHEREY-NAGEL NucleoSpin® Soil kit was associated with the highest alpha diversity estimates, providing the highest contribution to the overall sample diversity, as indicated by comparisons with computationally assembled reference communities, and is recommended to be used for any large-scale microbiota study of terrestrial ecosystems.


Asunto(s)
Ecosistema , Microbiota , Animales , ADN Bacteriano/genética , ADN/genética , Heces , Suelo , ARN Ribosómico 16S/genética , Mamíferos/genética
6.
Sci Rep ; 14(1): 2229, 2024 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-38278818

RESUMEN

The leafhopper genus Arboridia includes several species that feed on Vitis vinifera and cause leaf chlorosis. We report the first alien Arboridia infestation in Italy in 2021 in an Apulian vineyard. To confirm the taxonomic status of the species responsible for crop damage, and reconstruct its demographic history, we barcoded individuals from Apulia together with Arboridia spp. from Crete (Greece), A. adanae from Central Turkey and other specimens of the presumed sister species, A. dalmatina from Dalmatia (Croatia). Molecular phylogenies and barcoding gap analysis identified clades not associated with sampling locations. This result is incongruent with classical specimen assignment and is further supported by morphological analyses, which did not reveal significant differences among the populations. Therefore, we propose A. dalmatina as a junior synonym of A. adanae, which would become the only grapevine-related Arboridia species in the eastern Mediterranean. To further characterise A. adanae evolution, we performed a molecular clock analysis that suggested a radiation during the Pleistocene glaciations. Finally, to assess whether the Apulian individuals carried microorganisms of agricultural relevance, we sequenced their bacterial microbiota using 16S rRNA amplicon sequencing identifying three phytopathogens not generally associated with Arboridia activities as well as Wolbachia in one Apulian haplogroup. We discuss the agricultural implications of this infestation.


Asunto(s)
Hemípteros , Especies Introducidas , Humanos , Animales , ARN Ribosómico 16S/genética , Filogenia , Grecia
7.
Plant Cell ; 22(3): 655-71, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20305122

RESUMEN

We have compared the transcriptomic profiles of microdissected live ovules at four developmental stages between a diploid sexual and diploid apomictic Boechera. We sequenced >2 million SuperSAGE tags and identified (1) heterochronic tags (n = 595) that demonstrated significantly different patterns of expression between sexual and apomictic ovules across all developmental stages, (2) stage-specific tags (n = 577) that were found in a single developmental stage and differentially expressed between the sexual and apomictic ovules, and (3) sex-specific (n = 237) and apomixis-specific (n = 1106) tags that were found in all four developmental stages but in only one reproductive mode. Most heterochronic and stage-specific tags were significantly downregulated during early apomictic ovule development, and 110 were associated with reproduction. By contrast, most late stage-specific tags were upregulated in the apomictic ovules, likely the result of increased gene copy number in apomictic (hexaploid) versus sexual (triploid) endosperm or of parthenogenesis. Finally, we show that apomixis-specific gene expression is characterized by a significant overrepresentation of transcription factor activity. We hypothesize that apomeiosis is associated with global downregulation at the megaspore mother cell stage. As the diploid apomict analyzed here is an ancient hybrid, these data are consistent with the postulated link between hybridization and asexuality and provide a hypothesis for multiple evolutionary origins of apomixis in the genus Boechera.


Asunto(s)
Brassicaceae/genética , Perfilación de la Expresión Génica , Óvulo Vegetal/genética , Brassicaceae/embriología , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Óvulo Vegetal/embriología , ARN de Planta/genética , Reproducción/genética , Factores de Transcripción/metabolismo
8.
Sci Rep ; 13(1): 4056, 2023 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-36906688

RESUMEN

Metataxonomy has become the standard for characterizing the diversity and composition of microbial communities associated with multicellular organisms and their environment. Currently available protocols for metataxonomy assume a uniform DNA extraction, amplification and sequencing efficiency for all sample types and taxa. It has been suggested that the addition of a mock community (MC) to biological samples before the DNA extraction step could aid identification of technical biases during processing and support direct comparisons of microbiota composition, but the impact of MC on diversity estimates of samples is unknown. Here, large and small aliquots of pulverized bovine fecal samples were extracted with no, low or high doses of MC, characterized using standard Illumina technology for metataxonomics, and analysed with custom bioinformatic pipelines. We demonstrated that sample diversity estimates were distorted only if MC dose was high compared to sample mass (i.e. when MC > 10% of sample reads). We also showed that MC was an informative in situ positive control, permitting an estimation of the sample 16S copy number, and detecting sample outliers. We tested this approach on a range of sample types from a terrestrial ecosystem, including rhizosphere soil, whole invertebrates, and wild vertebrate fecal samples, and discuss possible clinical applications.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Microbiota , Animales , Bovinos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Bacterias/genética , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Microbiota/genética , Análisis de Secuencia de ADN/métodos
9.
Sci Rep ; 13(1): 4346, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36928612

RESUMEN

In light of the dramatic decline in amphibian biodiversity, new cost-efficient tools to rapidly monitor species abundance and population genetic diversity in space and time are urgently needed. It has been amply demonstrated that the use of environmental DNA (eDNA) for single-species detection and characterization of community composition can increase the precision of amphibian monitoring compared to traditional (observational) approaches. However, it has been suggested that the efficiency and accuracy of the eDNA approach could be further improved by more timely sampling; in addition, the quality of genetic diversity data derived from the same DNA has been confirmed in other vertebrate taxa, but not amphibians. Given the availability of previous tissue-based genetic data, here we use the common frog Rana temporaria Linnaeus, 1758 as our target species and an improved eDNA protocol to: (i) investigate differences in species detection between three developmental stages in various freshwater environments; and (ii) study the diversity of mitochondrial DNA (mtDNA) haplotypes detected in eDNA (water) samples, by amplifying a specific fragment of the COI gene (331 base pairs, bp) commonly used as a barcode. Our protocol proved to be a reliable tool for monitoring population genetic diversity of this species, and could be a valuable addition to amphibian conservation and wetland management.


Asunto(s)
ADN Ambiental , Animales , Estanques , Biodiversidad , Anuros , ADN Mitocondrial/genética , Variación Genética , Monitoreo del Ambiente/métodos , Código de Barras del ADN Taxonómico/métodos
11.
Genes (Basel) ; 12(4)2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33810423

RESUMEN

Consumers' choices are mainly based on fruit external characteristics such as the final size, weight, and shape. The majority of edible fruit are by tree fruit species, among which peach is the genomic and genetic reference for Prunus. In this research, we used a peach with a slow ripening (SR) phenotype, identified in the Fantasia (FAN) nectarine, associated with misregulation of genes involved in mesocarp identity and showing a reduction of final fruit size. By investigating the ploidy level, we observed a progressive increase in endoreduplication in mesocarp, which occurred in the late phases of FAN fruit development, but not in SR fruit. During fruit growth, we also detected that genes involved in endoreduplication were differentially modulated in FAN compared to SR. The differential transcriptional outputs were consistent with different chromatin states at loci of endoreduplication genes. The impaired expression of genes controlling cell cycle and endocycle as well as those claimed to play a role in fruit tissue identity result in the small final size of SR fruit.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Prunus persica/fisiología , Sitios de Carácter Cuantitativo , Ciclo Celular , Endorreduplicación , Regulación de la Expresión Génica de las Plantas , Fenotipo , Proteínas de Plantas/genética , Ploidias , Prunus persica/genética , Análisis de Secuencia de ARN
12.
Pest Manag Sci ; 77(6): 2971-2980, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33631029

RESUMEN

BACKGROUND: Before 2010, Amaranthus tuberculatus (Moq.) J. D. Sauer was barely known to farmers and stakeholders in Italy. Since then, several populations resistant to acetolactate synthase (ALS)-inhibiting herbicides have been collected. In most populations, a known target site resistance-endowing mutation was found, a Trp to Leu substitution at position 574 of the ALS gene, but it was unclear whether they had evolved resistance independently or not. The aims of the work were (i) to elucidate the population structure of Italian ALS-resistant A. tuberculatus populations, and (ii) to analyze the ALS haplotypes of the various populations to determine whether resistance arose multiple times independently. RESULTS: In order to determine the population structure of eight A. tuberculatus populations, eight previously described microsatellite loci were used. Two ancestors were found: three populations derived from one, and five from the other. In the 4-kb ALS region of the genome, including the 2-kb coding region, 389 single nucleotide polymorphisms were found. In silico haplotype estimation was used to reconstruct the sequence of three distinct haplotypes carrying the Trp574Leu mutation. In addition, no mutation was found in 83% of plants of a single population. CONCLUSIONS: (i) Resistance must have arisen independently at least three times; (ii) at least one population was already resistant to ALS inhibitors when introduced in Italy; (iii) a single haplotype with a Trp574Leu mutation was shared among six populations, probably because of broad seed dispersal; and (iv) one population likely evolved nontarget site ALS inhibitors resistance. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Acetolactato Sintasa , Amaranthus , Herbicidas , Acetolactato Sintasa/genética , Amaranthus/genética , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Italia
13.
BMC Plant Biol ; 9: 128, 2009 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-19852839

RESUMEN

BACKGROUND: Olea europaea L. is a traditional tree crop of the Mediterranean basin with a worldwide economical high impact. Differently from other fruit tree species, little is known about the physiological and molecular basis of the olive fruit development and a few sequences of genes and gene products are available for olive in public databases. This study deals with the identification of large sets of differentially expressed genes in developing olive fruits and the subsequent computational annotation by means of different software. RESULTS: mRNA from fruits of the cv. Leccino sampled at three different stages [i.e., initial fruit set (stage 1), completed pit hardening (stage 2) and veraison (stage 3)] was used for the identification of differentially expressed genes putatively involved in main processes along fruit development. Four subtractive hybridization libraries were constructed: forward and reverse between stage 1 and 2 (libraries A and B), and 2 and 3 (libraries C and D). All sequenced clones (1,132 in total) were analyzed through BlastX against non-redundant NCBI databases and about 60% of them showed similarity to known proteins. A total of 89 out of 642 differentially expressed unique sequences was further investigated by Real-Time PCR, showing a validation of the SSH results as high as 69%. Library-specific cDNA repertories were annotated according to the three main vocabularies of the gene ontology (GO): cellular component, biological process and molecular function. BlastX analysis, GO terms mapping and annotation analysis were performed using the Blast2GO software, a research tool designed with the main purpose of enabling GO based data mining on sequence sets for which no GO annotation is yet available. Bioinformatic analysis pointed out a significantly different distribution of the annotated sequences for each GO category, when comparing the three fruit developmental stages. The olive fruit-specific transcriptome dataset was used to query all known KEGG (Kyoto Encyclopaedia of Genes and Genomes) metabolic pathways for characterizing and positioning retrieved EST records. The integration of the olive sequence datasets within the MapMan platform for microarray analysis allowed the identification of specific biosynthetic pathways useful for the definition of key functional categories in time course analyses for gene groups. CONCLUSION: The bioinformatic annotation of all gene sequences was useful to shed light on metabolic pathways and transcriptional aspects related to carbohydrates, fatty acids, secondary metabolites, transcription factors and hormones as well as response to biotic and abiotic stresses throughout olive drupe development. These results represent a first step toward both functional genomics and systems biology research for understanding the gene functions and regulatory networks in olive fruit growth and ripening.


Asunto(s)
Frutas/genética , Perfilación de la Expresión Génica , Olea/genética , Análisis por Conglomerados , Biología Computacional , ADN de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Biblioteca de Genes , Redes Reguladoras de Genes , Genes de Plantas , Redes y Vías Metabólicas/genética , Análisis de Secuencia de ADN
14.
Plants (Basel) ; 8(6)2019 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-31181659

RESUMEN

The protein IDN2, together with the highly similar interactors FDM1 and FDM2, is required for RNA-directed DNA methylation (RdDM) and siRNA production. Epigenetic regulation of gene expression is required to restrict cell fate determination in A. thaliana ovules. Recently, three transcripts sharing high similarity with the A. thaliana IDN2 and FDM1-2 were found to be differentially expressed in ovules of apomictic Hypericum perforatum L. accessions. To gain further insight into the expression and regulation of these genes in the context of apomixis, we investigated genomic, transcriptional and functional aspects of the gene family in this species. The H. perforatum genome encodes for two IDN2-like and 7 FDM-like genes. Differential and heterochronic expression of FDM4-like genes was found in H. perforatum pistils. The involvement of these genes in reproduction and seed development is consistent with the observed reduction of the seed set and high variability in seed size in A. thaliana IDN2 and FDM-like knockout lines. Differential expression of IDN2-like and FDM-like genes in H. perforatum was predicted to affect the network of potential interactions between these proteins. Furthermore, pistil transcript levels are modulated by cytokinin and auxin but the effect operated by the two hormones depends on the reproductive phenotype.

15.
Genes (Basel) ; 10(11)2019 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-31717592

RESUMEN

The development of new varieties of horticultural crops benefits from the integration of conventional and molecular marker-assisted breeding schemes in order to combine phenotyping and genotyping information. In this study, a selected panel of 16 microsatellite markers were used in different steps of a breeding programme of lettuce (Lactuca sativa L., 2 n = 18). Molecular markers were first used to genotype 71 putative parental lines and to plan 89 controlled crosses designed to maximise recombination potentials. The resulting 871 progeny plants were then molecularly screened, and their marker allele profiles were compared with the profiles expected based on the parental lines. The average cross-pollination success rate was 68 ± 33%, so 602 F1 hybrids were completely identified. Unexpected genotypes were detected in 5% of cases, consistent with this species' spontaneous out-pollination rate. Finally, in a later step of the breeding programme, 47 different F3 progenies, selected by phenotyping for a number of morphological descriptors, were characterised in terms of their observed homozygosity and within-population genetic uniformity and stability. Ten of these populations had a median homozygosity above 90% and a median genetic similarity above 95% and are, therefore, particularly suitable for pre-commercial trials. In conclusion, this study shows the synergistic effects and advantages of conventional and molecular methods of selection applied in different steps of a breeding programme aimed at developing new varieties of lettuce.


Asunto(s)
Productos Agrícolas/genética , Horticultura/métodos , Lactuca/genética , Fitomejoramiento/métodos , Variación Genética , Inestabilidad Genómica , Homocigoto , Repeticiones de Microsatélite/genética , Polinización/genética , Recombinación Genética
16.
Front Plant Sci ; 10: 654, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31178879

RESUMEN

Hypericum perforatum L. (2n = 4x = 32) is an attractive model system for the study of aposporous apomixis. The earliest phenotypic features of aposporous apomixis in this species are the mitotic formation of unreduced embryo sacs from a somatic cell of the ovule nucellus and the avoidance of meiosis. In this research we addressed gene expression variation in sexual and apomictic plants, by focusing on the ovule nucellus, which is the cellular domain primarily involved into the differentiation of meiocyte precursors and aposporous embryo sacs, at a pre-meiotic developmental stage. Gene expression analyses performed by RNAseq identified 396 differentially expressed genes and 1834 transcripts displaying phenotype-specific expression. Furthermore, the sequencing and assembly of the genome from a diploid sexual accession allowed the annotation of a 50 kb sequence portion located upstream the HAPPY locus and to address the extent to which single transcripts were assembled in multiple variants and their co-expression levels. About one third of identified DEGs and phenotype-specific transcripts were associated to transcript variants with alternative expression patterns. Additionally, considering DEGs and phenotype-specific transcript, the co-expression level was estimated in about two transcripts per locus. Our gene expression study shows massive differences in the expression of several genes encoding for transposable elements. Transcriptional differences in the ovule nucellus and pistil terminal developmental stages were also found for subset of genes encoding for potentially interacting proteins involved in pre-mRNA splicing. Furthermore, the sexual and aposporous ovule transcriptomes were characterized by differential expression in genes operating in RNA silencing, RNA-mediated DNA methylation (RdDM) and histone and chromatin modifications. These findings are consistent with a role of these processes in regulating cell fate determination in the ovule, as indicated by forward genetic studies in sexual model species. The association between aposporous apomixis, pre-mRNA splicing and DNA methylation mediated by sRNAs, which is supported by expression data and by the enrichment in GO terms related to these processes, is consistent with the massive differential expression of multiple transposon-related sequences observed in ovules collected from both sexual and aposporous apomictic accessions. Overall, our data suggest that phenotypic expression of aposporous apomixis is concomitant with the modulation of key genes involved in the two interconnected processes: RNA splicing and RNA-directed DNA methylation.

17.
Plants (Basel) ; 8(4)2019 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-30935148

RESUMEN

Pompia is a citrus fruit endemic of Sardinia, Italy, with an essential oil profile showing outstanding anti-inflammatory and anti-microbic properties. Despite its remarkable pharmaceutical potential, little taxonomic and genetic information is available for this species. We applied flow cytometry and classical cytogenetic techniques to assess the DNA content and to reconstruct the karyotype of several Pompia accessions. Molecular data from plastid DNA barcoding and nuclear DNA sequencing were used to study the genetic distance between Pompia and other citrus species. Flow cytometric estimates of DNA content and somatic chromosome counts suggest that Pompia is a regular diploid Citrus species. DNA polymorphisms of nuclear and chloroplast markers allowed us to investigate the genetic relationships between Pompia accessions and other Citrus species. Based on DNA polymorphism data we propose that Pompia is a very recent interspecific hybrid generated by a cross between C. aurantium (as seed bearer) and C. medica (as pollen donor). Our findings pave the way for further and more specific investigations of local Pompia germplasm resources that may help the preservation and valorisation of this valuable citrus fruit tree.

18.
Sci Rep ; 9(1): 3271, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30824748

RESUMEN

The introgression of apomixis in major seed crops, would guarantee self-seeding of superior heterotic seeds over generations. In the grass species Paspalum simplex, apomixis is controlled by a single locus in which recombination is blocked. In the perspective of isolating the genetic determinants of apomixis, we report data on sequencing, in silico mapping and expression analysis of some of the genes contained in two cloned genomic regions of the apomixis locus of P. simplex. In silico mapping allowed us to identify a conserved synteny group homoeologous to the apomixis locus, located on a telomeric position of chromosomes 12, 8, 3 and 4 of rice, Sorghum bicolor, Setaria italica and Brachypodium distachyum, respectively, and on a more centromeric position of maize chromosome 1. Selected genes of the apomixis locus expressed sense and antisense transcripts in reproductively committed cells of sexual and apomictic ovules. Some of the genes considered here expressed apomixis-specific allelic variants which showed partial non-overlapping expression patterns with alleles shared by sexual and apomictic reproductive phenotypes. Our findings open new routes for the isolation of the genetic determinants of apomixis and, in perspective, for its introgression in crop grasses.


Asunto(s)
Cromosomas de las Plantas/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Sitios Genéticos , Paspalum/genética , Paspalum/crecimiento & desarrollo
19.
BMC Genomics ; 9: 347, 2008 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-18652646

RESUMEN

BACKGROUND: After 10-year-use of AFLP (Amplified Fragment Length Polymorphism) technology for DNA fingerprinting and mRNA profiling, large repertories of genome- and transcriptome-derived sequences are available in public databases for model, crop and tree species. AFLP marker systems have been and are being extensively exploited for genome scanning and gene mapping, as well as cDNA-AFLP for transcriptome profiling and differentially expressed gene cloning. The evaluation, annotation and classification of genomic markers and expressed transcripts would be of great utility for both functional genomics and systems biology research in plants. This may be achieved by means of the Gene Ontology (GO), consisting in three structured vocabularies (i.e. ontologies) describing genes, transcripts and proteins of any organism in terms of their associated cellular component, biological process and molecular function in a species-independent manner. In this paper, the functional annotation of about 8,000 AFLP-derived ESTs retrieved in the NCBI databases was carried out by using GO terminology. RESULTS: Descriptive statistics on the type, size and nature of gene sequences obtained by means of AFLP technology were calculated. The gene products associated with mRNA transcripts were then classified according to the three main GO vocabularies. A comparison of the functional content of cDNA-AFLP records was also performed by splitting the sequence dataset into monocots and dicots and by comparing them to all annotated ESTs of Arabidopsis and rice, respectively. On the whole, the statistical parameters adopted for the in silico AFLP-derived transcriptome-anchored sequence analysis proved to be critical for obtaining reliable GO results. Such an exhaustive annotation may offer a suitable platform for functional genomics, particularly useful in non-model species. CONCLUSION: Reliable GO annotations of AFLP-derived sequences can be gathered through the optimization of the experimental steps and the statistical parameters adopted. The Blast2GO software was shown to represent a comprehensive bioinformatics solution for an annotation-based functional analysis. According to the whole set of GO annotations, the AFLP technology generates thorough information for angiosperm gene products and shares common features across angiosperm species and families. The utility of this technology for structural and functional genomics in plants can be implemented by serial annotation analyses of genome-anchored fragments and organ/tissue-specific repertories of transcriptome-derived fragments.


Asunto(s)
Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Biología Computacional , Perfilación de la Expresión Génica , Genes de Plantas/genética , ADN Complementario/genética , Bases de Datos Genéticas , Estructuras de las Plantas/genética , Análisis de Secuencia de ADN
20.
Sci Rep ; 8(1): 3030, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29445151

RESUMEN

Apomixis (asexual reproduction through seeds) is considered a deviation of the sexual reproductive pathway leading to the development of clonal progenies genetically identical to the mother plant. Here we used the Methylation-Sensitive Amplification Polymorphism (MSAP) technique to characterize cytosine methylation patterns occurring in florets of sexual and aposporous Paspalum notatum genotypes, in order to identify epigenetically-controlled genes putatively involved in apomixis development. From twelve polymorphic MSAP-derived sequences, one (PN_6.6, later renamed PN_SCD1) was selected due to its relevant annotation and differential representation in apomictic and sexual floral transcriptome libraries. PN_SCD1 encodes the DENN domain/WD repeat-containing protein SCD1, which interacts with RAB GTPases- and/or MAPKs to promote specialized cell division, functions in clathrin-mediated membrane transport and acts as potential substrate receptor of CUL4 E3 ubiquitin ligases. Quantitative RT-PCR and comparative RNAseq analyses of laser microdissected nucellar cells confirmed PN_SCD1 upregulation in florets of apomictic plants and revealed that overexpression takes place just before the onset of apospory initials. Moreover, we found that several SCD1 molecular partners are expressed in P. notatum florets and upregulated in apomictic plants. Our results disclosed a specific vesicle trafficking molecular pathway epigenetically modulated during apomixis.


Asunto(s)
Apomixis/genética , Paspalum/genética , Cisteína/metabolismo , Metilación de ADN , Flores/genética , Genotipo , Hibridación in Situ , Técnicas de Amplificación de Ácido Nucleico/métodos , Paspalum/metabolismo , Proteínas de Plantas/genética , Reproducción Asexuada/genética , Semillas/genética , Transcriptoma
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda