Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Cell Mol Life Sci ; 80(7): 185, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37340282

RESUMEN

DIS3L2 degrades different types of RNAs in an exosome-independent manner including mRNAs and several types of non-coding RNAs. DIS3L2-mediated degradation is preceded by the addition of nontemplated uridines at the 3'end of its targets by the terminal uridylyl transferases 4 and 7. Most of the literature that concerns DIS3L2 characterizes its involvement in several RNA degradation pathways, however, there is some evidence that its dysregulated activity may contribute to cancer development. In the present study, we characterize the role of DIS3L2 in human colorectal cancer (CRC). Using the public RNA datasets from The Cancer Genome Atlas (TCGA), we found higher DIS3L2 mRNA levels in CRC tissues versus normal colonic samples as well as worse prognosis in patients with high DIS3L2 expression. In addition, our RNA deep-sequencing data revealed that knockdown (KD) of DIS3L2 induces a strong transcriptomic disturbance in SW480 CRC cells. Moreover, gene ontology (GO) analysis of significant upregulated transcripts displays enrichment in mRNAs encoding proteins involved in cell cycle regulation and cancer-related pathways, which guided us to evaluate which specific hallmarks of cancer are differentially regulated by DIS3L2. To do so, we employed four CRC cell lines (HCT116, SW480, Caco-2 and HT-29) differing in their mutational background and oncogenicity. We demonstrate that depletion of DIS3L2 results in reduced cell viability of highly oncogenic SW480 and HCT116 CRC cells, but had little or no impact in the more differentiated Caco-2 and HT-29 cells. Remarkably, the mTOR signaling pathway, crucial for cell survival and growth, is downregulated after DIS3L2 KD, whereas AZGP1, an mTOR pathway inhibitor, is upregulated. Furthermore, our results indicate that depletion of DIS3L2 disturbs metastasis-associated properties, such as cell migration and invasion, only in highly oncogenic CRC cells. Our work reveals for the first time a role for DIS3L2 in sustaining CRC cell proliferation and provides evidence that this ribonuclease is required to support the viability and invasive behavior of dedifferentiated CRC cells.


Asunto(s)
Neoplasias Colorrectales , Humanos , Células CACO-2 , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Células HCT116 , Proliferación Celular/genética , ARN Mensajero , Movimiento Celular/genética , Ribonucleasas/genética , Regulación Neoplásica de la Expresión Génica , Exorribonucleasas/genética , Exorribonucleasas/metabolismo
2.
BMC Biol ; 21(1): 28, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36755311

RESUMEN

BACKGROUND: Pericentromeric regions of human chromosomes are composed of tandem-repeated and highly organized sequences named satellite DNAs. Human classical satellite DNAs are classified into three families named HSat1, HSat2, and HSat3, which have historically posed a challenge for the assembly of the human reference genome where they are misrepresented due to their repetitive nature. Although being known for a long time as the most AT-rich fraction of the human genome, classical satellite HSat1A has been disregarded in genomic and transcriptional studies, falling behind other human satellites in terms of functional knowledge. Here, we aim to characterize and provide an understanding on the biological relevance of HSat1A. RESULTS: The path followed herein trails with HSat1A isolation and cloning, followed by in silico analysis. Monomer copy number and expression data was obtained in a wide variety of human cell lines, with greatly varying profiles in tumoral/non-tumoral samples. HSat1A was mapped in human chromosomes and applied in in situ transcriptional assays. Additionally, it was possible to observe the nuclear organization of HSat1A transcripts and further characterize them by 3' RACE-Seq. Size-varying polyadenylated HSat1A transcripts were detected, which possibly accounts for the intricate regulation of alternative polyadenylation. CONCLUSION: As far as we know, this work pioneers HSat1A transcription studies. With the emergence of new human genome assemblies, acrocentric pericentromeres are becoming relevant characters in disease and other biological contexts. HSat1A sequences and associated noncoding RNAs will most certainly prove significant in the future of HSat research.


Asunto(s)
ADN Satélite , Secuencias Repetidas en Tándem , Humanos , ADN Satélite/genética , ARN no Traducido , Genómica , Genoma Humano
3.
BMC Genomics ; 24(1): 576, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37759179

RESUMEN

BACKGROUND: Spinal Muscular Atrophy (SMA) and Amyotrophic Lateral Sclerosis (ALS) share phenotypic and molecular commonalities, including the fact that they can be caused by mutations in ubiquitous proteins involved in RNA metabolism, namely SMN, TDP-43 and FUS. Although this suggests the existence of common disease mechanisms, there is currently no model to explain the resulting motor neuron dysfunction. In this work we generated a parallel set of Drosophila models for adult-onset RNAi and tagged neuronal expression of the fly orthologues of the three human proteins, named Smn, TBPH and Caz, respectively. We profiled nuclear and cytoplasmic bound mRNAs using a RIP-seq approach and characterized the transcriptome of the RNAi models by RNA-seq. To unravel the mechanisms underlying the common functional impact of these proteins on neuronal cells, we devised a computational approach based on the construction of a tissue-specific library of protein functional modules, selected by an overall impact score measuring the estimated extent of perturbation caused by each gene knockdown. RESULTS: Transcriptome analysis revealed that the three proteins do not bind to the same RNA molecules and that only a limited set of functionally unrelated transcripts is commonly affected by their knock-down. However, through our integrative approach we were able to identify a concerted effect on protein functional modules, albeit acting through distinct targets. Most strikingly, functional annotation revealed that these modules are involved in critical cellular pathways for motor neurons, including neuromuscular junction function. Furthermore, selected modules were found to be significantly enriched in orthologues of human neuronal disease genes. CONCLUSIONS: The results presented here show that SMA and ALS disease-associated genes linked to RNA metabolism functionally converge on neuronal protein complexes, providing a new hypothesis to explain the common motor neuron phenotype. The functional modules identified represent promising biomarkers and therapeutic targets, namely given their alteration in asymptomatic settings.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteínas de Drosophila , Atrofia Muscular Espinal , Adulto , Humanos , Animales , Esclerosis Amiotrófica Lateral/genética , Drosophila/genética , Neuronas Motoras , ARN , Proteínas de Unión al ADN , Proteínas de Drosophila/genética
4.
Immunity ; 39(5): 874-84, 2013 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-24184056

RESUMEN

Severe sepsis remains a poorly understood systemic inflammatory condition with high mortality rates and limited therapeutic options in addition to organ support measures. Here we show that the clinically approved group of anthracyclines acts therapeutically at a low dose regimen to confer robust protection against severe sepsis in mice. This salutary effect is strictly dependent on the activation of DNA damage response and autophagy pathways in the lung, as demonstrated by deletion of the ataxia telangiectasia mutated (Atm) or the autophagy-related protein 7 (Atg7) specifically in this organ. The protective effect of anthracyclines occurs irrespectively of pathogen burden, conferring disease tolerance to severe sepsis. These findings demonstrate that DNA damage responses, including the ATM and Fanconi Anemia pathways, are important modulators of immune responses and might be exploited to confer protection to inflammation-driven conditions, including severe sepsis.


Asunto(s)
Antraciclinas/farmacología , Antibacterianos/farmacología , Reparación del ADN/efectos de los fármacos , Pulmón/efectos de los fármacos , Peritonitis/tratamiento farmacológico , Sepsis/prevención & control , Infecciones por Adenoviridae/inmunología , Animales , Antraciclinas/uso terapéutico , Antibacterianos/uso terapéutico , Proteínas de la Ataxia Telangiectasia Mutada/deficiencia , Proteínas de la Ataxia Telangiectasia Mutada/fisiología , Proteína 7 Relacionada con la Autofagia , Ciego/lesiones , Daño del ADN , Epirrubicina/administración & dosificación , Epirrubicina/farmacología , Epirrubicina/uso terapéutico , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/fisiología , Inflamación , Mediadores de Inflamación/análisis , Inyecciones Intraperitoneales , Pulmón/metabolismo , Meropenem , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/deficiencia , Proteínas Asociadas a Microtúbulos/fisiología , Especificidad de Órganos , Peritonitis/etiología , Peritonitis/genética , Peritonitis/inmunología , Peritonitis/fisiopatología , Infecciones del Sistema Respiratorio/inmunología , Choque Séptico/prevención & control , Tienamicinas/uso terapéutico , Irradiación Corporal Total
5.
BMC Bioinformatics ; 22(1): 37, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33522913

RESUMEN

BACKGROUND: IsomiRs are miRNA variants that vary in length and/or sequence when compared to their canonical forms. These variants display differences in length and/or sequence, including additions or deletions of one or more nucleotides (nts) at the 5' and/or 3' end, internal editings or untemplated 3' end additions. Most available tools for small RNA-seq data analysis do not allow the identification of isomiRs and often require advanced knowledge of bioinformatics. To overcome this, we have developed IsomiR Window, a platform that supports the systematic identification, quantification and functional exploration of isomiR expression in small RNA-seq datasets, accessible to users with no computational skills. METHODS: IsomiR Window enables the discovery of isomiRs and identification of all annotated non-coding RNAs in RNA-seq datasets from animals and plants. It comprises two main components: the IsomiR Window pipeline for data processing; and the IsomiR Window Browser interface. It integrates over ten third-party softwares for the analysis of small-RNA-seq data and holds a new algorithm that allows the detection of all possible types of isomiRs. These include 3' and 5'end isomiRs, 3' end tailings, isomiRs with single nucleotide polymorphisms (SNPs) or potential RNA editings, as well as all possible fuzzy combinations. IsomiR Window includes all required databases for analysis and annotation, and is freely distributed as a Linux virtual machine, including all required software. RESULTS: IsomiR Window processes several datasets in an automated manner, without restrictions of input file size. It generates high quality interactive figures and tables which can be exported into different formats. The performance of isomiR detection and quantification was assessed using simulated small-RNA-seq data. For correctly mapped reads, it identified different types of isomiRs with high confidence and 100% accuracy. The analysis of a small RNA-seq data from Basal Cell Carcinomas (BCCs) using isomiR Window confirmed that miR-183-5p is up-regulated in Nodular BCCs, but revealed that this effect was predominantly due to a novel 5'end variant. This variant displays a different seed region motif and 1756 isoform-exclusive mRNA targets that are significantly associated with disease pathways, underscoring the biological relevance of isomiR-focused analysis. IsomiR Window is available at https://isomir.fc.ul.pt/ .


Asunto(s)
Biología Computacional , MicroARNs , RNA-Seq , Animales , ARN Mensajero , Análisis de Secuencia de ARN , Programas Informáticos
6.
EMBO J ; 36(3): 346-360, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27993935

RESUMEN

Cell activation is a vital step for T-cell memory/effector differentiation as well as for productive HIV infection. To identify novel regulators of this process, we used next-generation sequencing to profile changes in microRNA expression occurring in purified human naive CD4 T cells in response to TCR stimulation and/or HIV infection. Our results demonstrate, for the first time, the transcriptional up-regulation of miR-34c-5p in response to TCR stimulation in naive CD4 T cells. The induction of this miR was further consistently found to be reduced by both HIV-1 and HIV-2 infections. Overexpression of miR-34c-5p led to changes in the expression of several genes involved in TCR signaling and cell activation, confirming its role as a novel regulator of naive CD4 T-cell activation. We additionally show that miR-34c-5p promotes HIV-1 replication, suggesting that its down-regulation during HIV infection may be part of an anti-viral host response.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , VIH/fisiología , Interacciones Huésped-Patógeno , Activación de Linfocitos , MicroARNs/análisis , Receptores de Antígenos de Linfocitos T/metabolismo , Replicación Viral , Linfocitos T CD4-Positivos/virología , Perfilación de la Expresión Génica , VIH/inmunología , Humanos , Evasión Inmune
8.
Int J Mol Sci ; 22(9)2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33946766

RESUMEN

(Peri)centromeric repetitive sequences and, more specifically, satellite DNA (satDNA) sequences, constitute a major human genomic component. SatDNA sequences can vary on a large number of features, including nucleotide composition, complexity, and abundance. Several satDNA families have been identified and characterized in the human genome through time, albeit at different speeds. Human satDNA families present a high degree of sub-variability, leading to the definition of various subfamilies with different organization and clustered localization. Evolution of satDNA analysis has enabled the progressive characterization of satDNA features. Despite recent advances in the sequencing of centromeric arrays, comprehensive genomic studies to assess their variability are still required to provide accurate and proportional representation of satDNA (peri)centromeric/acrocentric short arm sequences. Approaches combining multiple techniques have been successfully applied and seem to be the path to follow for generating integrated knowledge in the promising field of human satDNA biology.


Asunto(s)
ADN Satélite/genética , ADN Satélite/química , Evolución Molecular , Genoma Humano , Genómica/métodos , Genómica/tendencias , Humanos , Análisis de Secuencia de ADN/métodos , Análisis de Secuencia de ADN/tendencias , Factores de Tiempo
9.
Biochem Biophys Res Commun ; 518(4): 664-671, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31466720

RESUMEN

The nonsense-mediated decay (NMD) pathway selectively degrades mRNAs carrying a premature translation-termination codon but also regulates the abundance of a large number of physiological mRNAs that encode full-length proteins. In human cells, NMD-targeted mRNAs are degraded by endonucleolytic cleavage and exonucleolytic degradation from both 5-' and 3'-ends. This is done by a process not yet completely understood that recruits decapping and 5'-to-3' exonuclease activities, as well as deadenylating and 3'-to-5' exonuclease exosome activities. In yeast, DIS3/Rrp44 protein is the catalytic subunit of the exosome, but in humans, there are three known paralogues of this enzyme: DIS3, DIS3L1, and DIS3L2. However, little is known about their role in NMD. Here, we show that some NMD-targets are DIS3L2 substrates in human cells. In addition, we observed that DIS3L2 acts over full-length transcripts, through a process that also involves UPF1. Moreover, DIS3L2-mediated decay is dependent on the activity of the terminal uridylyl transferases Zcchc6/11 (TUT7/4). Together, our findings establish a role for DIS3L2 and uridylation in NMD.


Asunto(s)
Exorribonucleasas/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Degradación de ARNm Mediada por Codón sin Sentido/genética , ARN Mensajero/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Exorribonucleasas/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Células HEK293 , Células HeLa , Humanos , ARN Helicasas/genética , ARN Helicasas/metabolismo , ARN Nucleotidiltransferasas/genética , ARN Nucleotidiltransferasas/metabolismo , ARN Mensajero/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Uridina Monofosfato/metabolismo
10.
Adv Exp Med Biol ; 1157: 1-27, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31342435

RESUMEN

mRNA processing events introduce an intricate layer of complexity into gene expression processes, supporting a tremendous level of diversification of the genome's coding and regulatory potential, particularly in vertebrate species. The recent development of massive parallel sequencing methods and their adaptation to the identification and quantification of different RNA species and the dynamics of mRNA metabolism and processing has generated an unprecedented view over the regulatory networks that are established at this level, which contribute to sustain developmental, tissue specific or disease specific gene expression programs. In this chapter, we provide an overview of the recent evolution of transcriptome profiling methods and the surprising insights that have emerged in recent years regarding distinct mRNA processing events - from the 5' end to the 3' end of the molecule.


Asunto(s)
Empalme Alternativo , ARN Mensajero , Análisis de Secuencia de ARN , Transcriptoma , Perfilación de la Expresión Génica , ARN Mensajero/metabolismo
11.
J Neurochem ; 141(1): 12-30, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28054357

RESUMEN

In this review, we present our most recent understanding of key biomolecular processes that underlie two motor neuron degenerative disorders, amyotrophic lateral sclerosis, and spinal muscular atrophy. We focus on the role of four multifunctional proteins involved in RNA metabolism (TDP-43, FUS, SMN, and Senataxin) that play a causal role in these diseases. Recent results have led to a novel scenario of intricate connections between these four proteins, bringing transcriptome homeostasis into the spotlight as a common theme in motor neuron degeneration. We review reported functional and physical interactions between these four proteins, highlighting their common association with nuclear bodies and small nuclear ribonucleoprotein particle biogenesis and function. We discuss how these interactions are turning out to be particularly relevant for the control of transcription and chromatin homeostasis, including the recent identification of an association between SMN and Senataxin required to ensure the resolution of DNA-RNA hybrid formation and proper termination by RNA polymerase II. These connections strongly support the existence of common pathways underlying the spinal muscular atrophy and amyotrophic lateral sclerosis phenotype. We also discuss the potential of genome-wide expression profiling, in particular RNA sequencing derived data, to contribute to unravelling the underlying mechanisms. We provide a review of publicly available datasets that have addressed both diseases using these approaches, and highlight the value of investing in cross-disease studies to promote our understanding of the pathways leading to neurodegeneration.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Genómica/métodos , Homeostasis/genética , Atrofia Muscular Espinal/genética , ARN/genética , Transcriptoma/genética , Esclerosis Amiotrófica Lateral/diagnóstico , Animales , Bases de Datos Genéticas , Humanos , Atrofia Muscular Espinal/diagnóstico
12.
RNA ; 20(4): 474-82, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24550521

RESUMEN

The premessenger RNA of the majority of human genes can generate various transcripts through alternative splicing, and different tissues or disease states show specific patterns of splicing variants. These patterns depend on the relative concentrations of the splicing factors present in the cell nucleus, either as a consequence of their expression levels or of post-translational modifications, such as protein phosphorylation, which are determined by signal transduction pathways. Here, we analyzed the contribution of protein kinases to the regulation of alternative splicing variant Rac1b that is overexpressed in certain tumor types. In colorectal cells, we found that depletion of AKT2, AKT3, GSK3ß, and SRPK1 significantly decreased endogenous Rac1b levels. Although knockdown of AKT2 and AKT3 affected only Rac1b protein levels suggesting a post-splicing effect, the depletion of GSK3ß or SRPK1 decreased Rac1b alternative splicing, an effect mediated through changes in splicing factor SRSF1. In particular, the knockdown of SRPK1 or inhibition of its catalytic activity reduced phosphorylation and subsequent translocation of SRSF1 to the nucleus, limiting its availability to promote the inclusion of alternative exon 3b into the Rac1 pre-mRNA. Altogether, the data identify SRSF1 as a prime regulator of Rac1b expression in colorectal cells and provide further mechanistic insight into how the regulation of alternative splicing events by protein kinases can contribute to sustain tumor cell survival.


Asunto(s)
Empalme Alternativo/genética , Neoplasias Colorrectales/genética , Regulación Neoplásica de la Expresión Génica , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteína de Unión al GTP rac1/genética , Western Blotting , Núcleo Celular/genética , Neoplasias Colorrectales/metabolismo , Exones/genética , Técnica del Anticuerpo Fluorescente , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Microscopía Fluorescente , Proteínas Nucleares/genética , Fosforilación , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Proteínas de Unión al ARN/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Empalme Serina-Arginina , Transducción de Señal , Células Tumorales Cultivadas , Proteína de Unión al GTP rac1/metabolismo
13.
Cell Discov ; 10(1): 64, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834551

RESUMEN

Effective antibody responses are essential to generate protective humoral immunity. Different inflammatory signals polarize T cells towards appropriate effector phenotypes during an infection or immunization. Th1 and Th2 cells have been associated with the polarization of humoral responses. However, T follicular helper cells (Tfh) have a unique ability to access the B cell follicle and support the germinal center (GC) responses by providing B cell help. We investigated the specialization of Tfh cells induced under type-1 and type-2 conditions. We first studied homogenous Tfh cell populations generated by adoptively transferred TCR-transgenic T cells in mice immunized with type-1 and type-2 adjuvants. Using a machine learning approach, we established a gene expression signature that discriminates Tfh cells polarized towards type-1 and type-2 response, defined as Tfh1 and Tfh2 cells. The distinct signatures of Tfh1 and Tfh2 cells were validated against datasets of Tfh cells induced following lymphocytic choriomeningitis virus (LCMV) or helminth infection. We generated single-cell and spatial transcriptomics datasets to dissect the heterogeneity of Tfh cells and their localization under the two immunizing conditions. Besides a distinct specialization of GC Tfh cells under the two immunizations and in different regions of the lymph nodes, we found a population of Gzmk+ Tfh cells specific for type-1 conditions. In human individuals, we could equally identify CMV-specific Tfh cells that expressed Gzmk. Our results show that Tfh cells acquire a specialized function under distinct types of immune responses and with particular properties within the B cell follicle and the GC.

15.
Front Genet ; 14: 1216890, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37415603

RESUMEN

The recurring outbreaks caused by emerging RNA viruses have fostered an increased interest in the research of the mechanisms that regulate viral life cycles and the pathological outcomes associated with infections. Although interactions at the protein level are well-studied, interactions mediated by RNA molecules are less explored. RNA viruses can encode small non-coding RNAs molecules (sncRNAs), including viral miRNAs (v-miRNAs), that play important roles in modulating host immune responses and viral replication by targeting viral or host transcripts. Starting from the analysis of public databases compiling the known repertoire of viral ncRNA molecules and the evolution of publications and research interests on this topic in the wake of the COVID-19 pandemic, we provide an updated view on the current knowledge on viral sncRNAs, with a focus on v-miRNAs encoded by RNA viruses, and their mechanisms of action. We also discuss the potential of these molecules as diagnostic and prognostic biomarkers for viral infections and the development of antiviral therapies targeting v-miRNAs. This review emphasizes the importance of continued research efforts to characterize sncRNAs encoded by RNA viruses, identifies the most relevant pitfalls in the study of these molecules, and highlights the paradigm changes that have occurred in the last few years regarding their biogenesis, prevalence and functional relevance in the context of host-pathogen interactions.

16.
Cell Biosci ; 13(1): 26, 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36759923

RESUMEN

BACKGROUND: The phenotypic heterogeneity observed in Cystic Fibrosis (CF) patients suggests the involvement of other genes, besides CFTR. Here, we combined transcriptome and proteome analysis to understand the global gene expression patterns associated with five prototypical CFTR mutations. RESULTS: Evaluation of differentially expressed genes and proteins unveiled common and mutation-specific changes revealing functional signatures that are much more associated with the specific molecular defects associated with each mutation than to the CFTR loss-of-function phenotype. The combination of both datasets revealed that mutation-specific detected translated-transcripts (Dtt) have a high level of consistency. CONCLUSIONS: This is the first combined transcriptomic and proteomic study focusing on prototypical CFTR mutations. Analysis of Dtt provides novel insight into the pathophysiology of CF, and the mechanisms through which each mutation class causes disease and will likely contribute to the identification of new therapeutic targets and/or biomarkers for CF.

17.
Cancers (Basel) ; 15(16)2023 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-37627212

RESUMEN

Locally advanced rectal cancer (LARC) has traditionally been treated with trimodality therapy consisting of neoadjuvant radiation +/- chemotherapy, surgery, and adjuvant chemotherapy. There is currently a clinical need for biomarkers to predict treatment response and outcomes, especially during neoadjuvant therapy. Liquid biopsies in the form of circulating tumour cells (CTCs) and circulating nucleic acids in particular microRNAs (miRNA) are novel, the latter also being highly stable and clinically relevant regulators of disease. We studied a prospective cohort of 52 patients with LARC, and obtained samples at baseline, during treatment, and post-treatment. We enumerated CTCs during chemoradiation at these three time-points, using the IsofluxTM (Fluxion Biosciences Inc., Alameda, CA, USA) CTC Isolation and detection platform. We then subjected the isolated CTCs to miRNA expression analyses, using a panel of 106 miRNA candidates. We identified CTCs in 73% of patients at baseline; numbers fell and miRNA expression profiles also changed during treatment. Between baseline and during treatment (week 3) time-points, three microRNAs (hsa-miR-95, hsa-miR-10a, and hsa-miR-16-1*) were highly differentially expressed. Importantly, hsa-miR-19b-3p and hsa-miR-483-5p were found to correlate with good response to treatment. The latter (hsa-miR-483-5p) was also found to be differentially expressed between good responders and poor responders. These miRNAs represent potential predictive biomarkers, and thus a potential miRNA-based treatment strategy. In this study, we demonstrate that CTCs are present and can be isolated in the non-metastatic early-stage cancer setting, and their associated miRNA profiles can potentially be utilized to predict treatment response.

18.
Microorganisms ; 11(3)2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36985245

RESUMEN

Grapevine is one of the most important fruit crops worldwide, being Portugal one of the top wine producers. It is well established that wine sensory characteristics from a particular region are defined by the physiological responses of the grapevine to its environment and thus, the concept of terroir in viticulture was established. Among all the factors that contribute to terroir definition, soil microorganisms play a major role from nutrient recycling to a drastic influence on plant fitness (growth and protection) and of course wine production. Soil microbiome from four different terroirs in Quinta dos Murças vineyard was analysed through long-read Oxford Nanopore sequencing. We have developed an analytical pipeline that allows the identification of function, ecologies, and indicator species based on long read sequencing data. The Douro vineyard was used as a case study, and we were able to establish microbiome signatures of each terroir.

19.
Genes (Basel) ; 13(2)2022 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-35205318

RESUMEN

MicroRNAs (miRNAs) are crucial regulators of cellular processes, including metabolism. Attempts to use miRNAs as therapeutic agents are being explored in several areas, including the control of cancer progression. Recent evidence suggests fine tuning miRNA activity to reprogram tumor cell metabolism has enormous potential as an alternative treatment option. Indeed, cancer growth is known to be linked to profound metabolic changes. Likewise, the emerging field of immunometabolism is leading to a refined understanding of how immune cell proliferation and function is governed by glucose homeostasis. Different immune cell types are now known to have unique metabolic signatures that switch in response to a changing environment. T-cell subsets exhibit distinct metabolic profiles which underlie their alternative differentiation and phenotypic functions. Recent evidence shows that the susceptibility of CD4+ T-cells to HIV infection is intimately linked to their metabolic activity, with many of the metabolic features of HIV-1-infected cells resembling those found in tumor cells. In this review, we discuss the use of miRNA modulation to achieve metabolic reprogramming for cancer therapy and explore the idea that the same approach may serve as an effective mechanism to restrict HIV replication and eliminate infected cells.


Asunto(s)
Infecciones por VIH , VIH-1 , MicroARNs , Neoplasias , Infecciones por VIH/genética , Infecciones por VIH/terapia , VIH-1/genética , Humanos , MicroARNs/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/terapia , Linfocitos T/metabolismo
20.
Biomolecules ; 12(2)2022 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-35204832

RESUMEN

microRNAs are small non-coding RNAs that play a key role in regulating gene expression. These molecules exert their function through sequence complementarity with microRNA responsive elements and are typically located in the 3' untranslated region of mRNAs, negatively regulating expression. Even though the relevant role of miRNA-dependent regulation is broadly recognized, the principles governing their ability to lead to specific functional outcomes in distinct cell types are still not well understood. In recent years, an intriguing hypothesis proposed that miRNA-responsive elements act as communication links between different RNA species, making the investigation of microRNA function even more complex than previously thought. The competing endogenous RNA hypothesis suggests the presence of a new level of regulation, whereby a specific RNA transcript can indirectly influence the abundance of other transcripts by limiting the availability of a common miRNA, acting as a "molecular sponge". Since this idea has been proposed, several studies have tried to pinpoint the interaction networks that have been established between different RNA species and whether they contribute to normal cell function and disease. The focus of this review is to highlight recent developments and achievements made towards the process of characterizing competing endogenous RNA networks and their role in cellular function.


Asunto(s)
Redes Reguladoras de Genes , MicroARNs , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , ARN Largo no Codificante/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda