Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Trends Genet ; 38(2): 109-112, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34836651

RESUMEN

Rare diseases affect nearly 400 million people worldwide and have a devastating impact on patients and families. Although these diseases are collectively common, they are often overlooked by the research community. We present the ongoing work of the PACS1 Syndrome Research Foundation as a paradigm for approaching rare disease research.


Asunto(s)
Enfermedades Raras , Proteínas de Transporte Vesicular , Humanos , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Enfermedades Raras/genética , Enfermedades Raras/terapia , Síndrome
2.
Ann Neurol ; 90(2): 274-284, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34185323

RESUMEN

OBJECTIVE: The MAST family of microtubule-associated serine-threonine kinases (STKs) have distinct expression patterns in the developing and mature human and mouse brain. To date, only MAST1 has been conclusively associated with neurological disease, with de novo variants in individuals with a neurodevelopmental disorder, including a mega corpus callosum. METHODS: Using exome sequencing, we identify MAST3 missense variants in individuals with epilepsy. We also assess the effect of these variants on the ability of MAST3 to phosphorylate the target gene product ARPP-16 in HEK293T cells. RESULTS: We identify de novo missense variants in the STK domain in 11 individuals, including 2 recurrent variants p.G510S (n = 5) and p.G515S (n = 3). All 11 individuals had developmental and epileptic encephalopathy, with 8 having normal development prior to seizure onset at <2 years of age. All patients developed multiple seizure types, 9 of 11 patients had seizures triggered by fever and 9 of 11 patients had drug-resistant seizures. In vitro analysis of HEK293T cells transfected with MAST3 cDNA carrying a subset of these patient-specific missense variants demonstrated variable but generally lower expression, with concomitant increased phosphorylation of the MAST3 target, ARPP-16, compared to wild-type. These findings suggest the patient-specific variants may confer MAST3 gain-of-function. Moreover, single-nuclei RNA sequencing and immunohistochemistry shows that MAST3 expression is restricted to excitatory neurons in the cortex late in prenatal development and postnatally. INTERPRETATION: In summary, we describe MAST3 as a novel epilepsy-associated gene with a potential gain-of-function pathogenic mechanism that may be primarily restricted to excitatory neurons in the cortex. ANN NEUROL 2021;90:274-284.


Asunto(s)
Epilepsia/diagnóstico por imagen , Epilepsia/genética , Variación Genética/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas Serina-Treonina Quinasas/genética , Adolescente , Adulto , Secuencia de Aminoácidos , Animales , Niño , Estudios de Cohortes , Epilepsia/metabolismo , Femenino , Estudios de Seguimiento , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/biosíntesis , Proteínas Serina-Treonina Quinasas/biosíntesis , Adulto Joven
3.
Am J Hum Genet ; 101(3): 441-450, 2017 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-28823706

RESUMEN

Pontocerebellar hypoplasia (PCH) represents a group of recessive developmental disorders characterized by impaired growth of the pons and cerebellum, which frequently follows a degenerative course. Currently, there are 10 partially overlapping clinical subtypes and 13 genes known mutated in PCH. Here, we report biallelic TBC1D23 mutations in six individuals from four unrelated families manifesting a non-degenerative form of PCH. In addition to reduced volume of pons and cerebellum, affected individuals had microcephaly, psychomotor delay, and ataxia. In zebrafish, tbc1d23 morphants replicated the human phenotype showing hindbrain volume loss. TBC1D23 localized at the trans-Golgi and was regulated by the small GTPases Arl1 and Arl8, suggesting a role in trans-Golgi membrane trafficking. Altogether, this study provides a causative link between TBC1D23 mutations and PCH and suggests a less severe clinical course than other PCH subtypes.


Asunto(s)
Enfermedades Cerebelosas/genética , Proteínas Activadoras de GTPasa/genética , Homocigoto , Microcefalia/genética , Mutación , Adolescente , Animales , Enfermedades Cerebelosas/patología , Niño , Preescolar , Femenino , Células HeLa , Humanos , Masculino , Microcefalia/patología , Linaje , Fenotipo , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
4.
Epilepsia ; 61(10): 2313-2320, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32944953

RESUMEN

OBJECTIVE: PCDH19-related epilepsy is characterized by a distinctive pattern of X-linked inheritance, where heterozygous females exhibit seizures and hemizygous males are asymptomatic. A cellular interference mechanism resulting from the presence of both wild-type and mutant PCDH19 neurons in heterozygous patients or mosaic carriers of PCDH19 variants has been hypothesized. We aim to investigate seizure susceptibility and progression in the Pchd19 mouse model. METHODS: We assessed seizure susceptibility and progression in the Pcdh19 mouse model using three acute seizure induction paradigms. We first induced focal, clonic seizures using the 6-Hz psychomotor test. Mice were stimulated with increasing current intensities and graded according to a modified Racine scale. We next induced generalized seizures using flurothyl or pentylenetetrazol (PTZ), both γ-aminobutyric acid type A receptor function inhibitors, and recorded latencies to myoclonic and generalized tonic-clonic seizures. RESULTS: Pcdh19 knockout and heterozygous females displayed increased seizure susceptibility across all current intensities in the 6-Hz psychomotor test, and increased severity overall. They also exhibited shorter latencies to generalized seizures following flurothyl, but not PTZ, seizure induction. Hemizygous males showed comparable seizure incidence and severity to their wild-type male littermates across all paradigms tested. SIGNIFICANCE: The heightened susceptibility observed in Pcdh19 knockout females suggests additional mechanisms other than cellular interference are at play in PCDH19-related epilepsy. Further experiments are needed to understand the variability in seizure susceptibility so that this model can be best utilized toward development of future therapeutic strategies for PCDH19-related epilepsy.


Asunto(s)
Cadherinas/deficiencia , Cadherinas/genética , Desempeño Psicomotor/fisiología , Convulsiones/genética , Convulsiones/metabolismo , Animales , Electroencefalografía/métodos , Femenino , Predisposición Genética a la Enfermedad/genética , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Protocadherinas , Convulsiones/fisiopatología
5.
Ann Neurol ; 84(5): 638-647, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30178464

RESUMEN

OBJECTIVE: To identify causes of the autosomal-recessive malformation, diencephalic-mesencephalic junction dysplasia (DMJD) syndrome. METHODS: Eight families with DMJD were studied by whole-exome or targeted sequencing, with detailed clinical and radiological characterization. Patient-derived induced pluripotent stem cells were derived into neural precursor and endothelial cells to study gene expression. RESULTS: All patients showed biallelic mutations in the nonclustered protocadherin-12 (PCDH12) gene. The characteristic clinical presentation included progressive microcephaly, craniofacial dysmorphism, psychomotor disability, epilepsy, and axial hypotonia with variable appendicular spasticity. Brain imaging showed brainstem malformations and with frequent thinned corpus callosum with punctate brain calcifications, reflecting expression of PCDH12 in neural and endothelial cells. These cells showed lack of PCDH12 expression and impaired neurite outgrowth. INTERPRETATION: DMJD patients have biallelic mutations in PCDH12 and lack of protein expression. These patients present with characteristic microcephaly and abnormalities of white matter tracts. Such pathogenic variants predict a poor outcome as a result of brainstem malformation and evidence of white matter tract defects, and should be added to the phenotypic spectrum associated with PCDH12-related conditions. Ann Neurol 2018;84:646-655.


Asunto(s)
Tronco Encefálico/anomalías , Cadherinas/genética , Malformaciones del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/patología , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Mutación , Protocadherinas
6.
Am J Hum Genet ; 94(1): 80-6, 2014 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-24360807

RESUMEN

Joubert syndrome and related disorders (JSRDs) are genetically heterogeneous and characterized by a distinctive mid-hindbrain malformation. Causative mutations lead to primary cilia dysfunction, which often results in variable involvement of other organs such as the liver, retina, and kidney. We identified predicted null mutations in CSPP1 in six individuals affected by classical JSRDs. CSPP1 encodes a protein localized to centrosomes and spindle poles, as well as to the primary cilium. Despite the known interaction between CSPP1 and nephronophthisis-associated proteins, none of the affected individuals in our cohort presented with kidney disease, and further, screening of a large cohort of individuals with nephronophthisis demonstrated no mutations. CSPP1 is broadly expressed in neural tissue, and its encoded protein localizes to the primary cilium in an in vitro model of human neurogenesis. Here, we show abrogated protein levels and ciliogenesis in affected fibroblasts. Our data thus suggest that CSPP1 is involved in neural-specific functions of primary cilia.


Asunto(s)
Proteínas de Ciclo Celular/genética , Enfermedades Cerebelosas/genética , Anomalías del Ojo/genética , Eliminación de Gen , Enfermedades Renales Quísticas/genética , Proteínas Asociadas a Microtúbulos/genética , Retina/anomalías , Anomalías Múltiples , Encéfalo/patología , Proteínas de Ciclo Celular/metabolismo , Centrosoma/metabolismo , Cerebelo/anomalías , Cilios/genética , Cilios/patología , Estudios de Cohortes , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Procesamiento de Imagen Asistido por Computador , Proteínas Asociadas a Microtúbulos/metabolismo , Polimorfismo de Nucleótido Simple
7.
Nat Commun ; 15(1): 827, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38280846

RESUMEN

PACS1 syndrome is a neurodevelopmental disorder characterized by intellectual disability and distinct craniofacial abnormalities resulting from a de novo p.R203W variant in phosphofurin acidic cluster sorting protein 1 (PACS1). PACS1 is known to have functions in the endosomal pathway and nucleus, but how the p.R203W variant affects developing neurons is not fully understood. Here we differentiated stem cells towards neuronal models including cortical organoids to investigate the impact of the PACS1 syndrome-causing variant on neurodevelopment. While few deleterious effects were detected in PACS1(+/R203W) neural precursors, mature PACS1(+/R203W) glutamatergic neurons exhibited impaired expression of genes involved in synaptic signaling processes. Subsequent characterization of neural activity using calcium imaging and multielectrode arrays revealed the p.R203W PACS1 variant leads to a prolonged neuronal network burst duration mediated by an increased interspike interval. These findings demonstrate the impact of the PACS1 p.R203W variant on developing human neural tissue and uncover putative electrophysiological underpinnings of disease.


Asunto(s)
Anomalías Craneofaciales , Células Madre Pluripotentes Inducidas , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Neuronas , Discapacidad Intelectual/genética , Anomalías Craneofaciales/genética , Proteínas de Transporte Vesicular/genética
8.
STAR Protoc ; 5(1): 102904, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38427568

RESUMEN

Neurodevelopmental disorders are characterized by complex phenotypes that often result from concomitant dysregulation of cell proliferation, differentiation, or other crucial developmental processes. Here, we present a protocol to quantify differentiation of progenitor populations during early stages of neurogenesis in induced pluripotent stem cell (iPSC)-derived cerebral organoids. We describe steps for organoid differentiation and maturation, sample preparation, immunofluorescence, and imaging and analysis using epifluorescence microscopy. This protocol can be used to compare cerebral organoids from control and patient-derived iPSCs. For complete details on the use and execution of this protocol, please refer to Rakotomamonjy et al. (2023).1.


Asunto(s)
Células Madre Pluripotentes Inducidas , Trastornos del Neurodesarrollo , Humanos , Diferenciación Celular/genética , Neurogénesis/genética , Organoides
9.
J Clin Oncol ; 42(9): 1077-1087, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38113419

RESUMEN

PURPOSE: About a third of patients with relapsed or refractory classic Hodgkin lymphoma (r/r CHL) succumb to their disease after high-dose chemotherapy followed by autologous stem-cell transplantation (HDC/ASCT). Here, we aimed to describe spatially resolved tumor microenvironment (TME) ecosystems to establish novel biomarkers associated with treatment failure in r/r CHL. PATIENTS AND METHODS: We performed imaging mass cytometry (IMC) on 71 paired primary diagnostic and relapse biopsies using a marker panel specific to CHL biology. For each cell type in the TME, we calculated a spatial score measuring the distance of nearest neighbor cells to the malignant Hodgkin Reed Sternberg cells within the close interaction range. Spatial scores were used as features in prognostic model development for post-ASCT outcomes. RESULTS: Highly multiplexed IMC data revealed shared TME patterns in paired diagnostic and early r/r CHL samples, whereas TME patterns were more divergent in pairs of diagnostic and late relapse samples. Integrated analysis of IMC and single-cell RNA sequencing data identified unique architecture defined by CXCR5+ Hodgkin and Reed Sternberg (HRS) cells and their strong spatial relationship with CXCL13+ macrophages in the TME. We developed a prognostic assay (RHL4S) using four spatially resolved parameters, CXCR5+ HRS cells, PD1+CD4+ T cells, CD68+ tumor-associated macrophages, and CXCR5+ B cells, which effectively separated patients into high-risk versus low-risk groups with significantly different post-ASCT outcomes. The RHL4S assay was validated in an independent r/r CHL cohort using a multicolor immunofluorescence assay. CONCLUSION: We identified the interaction of CXCR5+ HRS cells with ligand-expressing CXCL13+ macrophages as a prominent crosstalk axis in relapsed CHL. Harnessing this TME biology, we developed a novel prognostic model applicable to r/r CHL biopsies, RHL4S, opening new avenues for spatial biomarker development.


Asunto(s)
Enfermedad de Hodgkin , Humanos , Enfermedad de Hodgkin/tratamiento farmacológico , Microambiente Tumoral , Ecosistema , Recurrencia Local de Neoplasia , Resultado del Tratamiento , Recurrencia
10.
bioRxiv ; 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36711630

RESUMEN

Protocadherins (PCDHs) are cell adhesion molecules that regulate many essential neurodevelopmental processes related to neuronal maturation, dendritic arbor formation, axon pathfinding, and synaptic plasticity. Bi-allelic loss-of-function variants in PCDH12 are associated with several neurodevelopmental disorders (NDDs) such as diencephalic-mesencephalic dysplasia syndrome, cerebral palsy, cerebellar ataxia, and microcephaly. Despite the highly deleterious outcome resulting from loss of PCDH12, little is known about its role during brain development and disease. Here, we show that PCDH12 loss severely impairs cerebral organoid development with reduced proliferative areas and disrupted laminar organization. 2D models further show that neural progenitor cells lacking PCDH12 prematurely exit cell cycle and differentiate earlier when compared to wildtype. Furthermore, we show that PCDH12 regulates neuronal migration through a mechanism requiring ADAM10-mediated ectodomain shedding and membrane recruitment of cytoskeleton regulators. Our data demonstrate a critical and broad involvement of PCDH12 in cortical development, revealing the pathogenic mechanisms underlying PCDH12-related NDDs.

11.
Cell Rep ; 42(8): 112845, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37480564

RESUMEN

Protocadherins (PCDHs) are cell adhesion molecules that regulate many essential neurodevelopmental processes related to neuronal maturation, dendritic arbor formation, axon pathfinding, and synaptic plasticity. Biallelic loss-of-function variants in PCDH12 are associated with several neurodevelopmental disorders (NDDs). Despite the highly deleterious outcome resulting from loss of PCDH12, little is known about its role during brain development and disease. Here, we show that PCDH12 loss severely impairs cerebral organoid development, with reduced proliferative areas and disrupted laminar organization. 2D models further show that neural progenitor cells lacking PCDH12 prematurely exit the cell cycle and differentiate earlier when compared with wild type. Furthermore, we show that PCDH12 regulates neuronal migration and suggest that this could be through a mechanism requiring ADAM10-mediated ectodomain shedding and/or membrane recruitment of cytoskeleton regulators. Our results demonstrate a critical involvement of PCDH12 in cortical organoid development, suggesting a potential cause for the pathogenic mechanisms underlying PCDH12-related NDDs.


Asunto(s)
Orientación del Axón , Organoides , Proteína ADAM10 , Ciclo Celular , División Celular
12.
Blood Adv ; 6(16): 4675-4690, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35675517

RESUMEN

Multiplexed immune cell profiling of the tumor microenvironment (TME) in cancer has improved our understanding of cancer immunology, but complex spatial analyses of tumor-immune interactions in lymphoma are lacking. Here, we used imaging mass cytometry (IMC) on 33 cases of diffuse large B-cell lymphoma (DLBCL) to characterize tumor and immune cell architecture and correlate it to clinicopathological features such as cell of origin, gene mutations, and responsiveness to chemotherapy. To understand the poor response of DLBCL to immune checkpoint inhibitors (ICI), we compared our results to IMC data from Hodgkin lymphoma, a cancer highly responsive to ICI, and observed differences in the expression of PD-L1, PD-1, and TIM-3. We created a spatial classification of tumor cells and identified tumor-centric subregions of immune activation, immune suppression, and immune exclusion within the topology of DLBCL. Finally, the spatial analysis allowed us to identify markers such as CXCR3, which are associated with penetration of immune cells into immune desert regions, with important implications for engineered cellular therapies. This is the first study to integrate tumor mutational profiling, cell of origin classification, and multiplexed immuno-phenotyping of the TME into a spatial analysis of DLBCL at the single-cell level. We demonstrate that, far from being histopathologically monotonous, DLBCL has a complex tumor architecture, and that changes in tumor topology can be correlated with clinically relevant features. This analysis identifies candidate biomarkers and therapeutic targets such as TIM-3, CCR4, and CXCR3 that are relevant for combination treatment strategies in immuno-oncology and cellular therapies.


Asunto(s)
Enfermedad de Hodgkin , Linfoma de Células B Grandes Difuso , Receptor 2 Celular del Virus de la Hepatitis A , Humanos , Linfoma de Células B Grandes Difuso/patología , Análisis Espacial , Microambiente Tumoral/genética
13.
J Neurochem ; 117(4): 654-64, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21371036

RESUMEN

Reactive oxygen species (ROS) are produced early during apoptosis of cerebellar granule neurons induced by low potassium (K5) and staurosporine (Sts). In addition, K5 and Sts activate NADPH oxidases (NOX). Recently, we described that K5 and Sts induce apoptotic volume decrease (AVD) at a time when ROS generation and NOX activity occur. In the present study, we evaluated the relationship between ROS generation and ionic fluxes during AVD. Here, we showed that K5- and Sts-induced AVD was inhibited by antioxidants and that direct ROS production induced AVD. Moreover, NOX inhibitors eliminated AVD induced by both K5 and Sts. Sts, but not K5, failed to induce AVD in cerebellar granule neurons from NOX2 knockout mice. These findings suggest that K5- and Sts-induced AVD is largely mediated by ROS produced by NOX. On the other hand, we also found that the blockage of ionic fluxes involved in AVD inhibited both ROS generation and NOX activity. These findings suggest that ROS generation and NOX activity are involved in ionic fluxes activation, which in turn could maintain ROS generation by activating NOX, leading to a self-amplifying cycle.


Asunto(s)
Cerebelo/citología , NADPH Oxidasas/metabolismo , Neuronas/metabolismo , Neuronas/ultraestructura , Especies Reactivas de Oxígeno/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Tamaño de la Célula , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Cerebelo/efectos de los fármacos , Cerebelo/ultraestructura , Inhibidores Enzimáticos/farmacología , Canales Iónicos/efectos de los fármacos , Canales Iónicos/metabolismo , Neuronas/enzimología , Potasio/farmacología , Ratas , Estaurosporina/farmacología
14.
J Neurosci Res ; 88(1): 73-85, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19598251

RESUMEN

Programmed cell death (PCD) has been defined as an active, controlled process in which cells participate in their own demise. Apoptosis, or type I PCD, has been widely characterized, both morphologically and biochemically. More recently, autophagy, the self-digesting mechanism involved in the removal of cytoplasmic long-lived proteins, has been involved in cell death, and type II PCD is defined as cell death occurring with autophagic features. Neurons can undergo more than one type of PCD as a backup mechanism when the traditional death pathway is inhibited or in response to a particular death-inducing stimulus. Reactive oxygen species (ROS) have been shown to be important signaling molecules in the execution of apoptosis and, more recently, in the autophagic pathway. In this work, we characterize apoptotic and autophagic cell death in rat cerebellar granule neuron (CGN) culture, a widespread model for the study of neuronal death. Potassium deprivation (K5) and staurosporine (STS) were used for death induction. We found apoptotic and autophagic features under both conditions. Caspase inhibition as well as autophagy inhibition by 3-methyl adenine decreased cell death. Moreover, CGN can undergo the alternative type of cell death when the other one is inhibited. An antioxidant or NADPH oxidase inhibitors delayed apoptosis and had no effect in autophagic features. Thus, we found that autophagy plays a role in cell death of CGN and that, when cells are treated with K5 or STS, both autophagy and ROS seem to promote apoptosis by independent mechanisms.


Asunto(s)
Apoptosis/fisiología , Autofagia/fisiología , Cerebelo/metabolismo , Neuronas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Análisis de Varianza , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Western Blotting , Caspasas/metabolismo , Células Cultivadas , Cerebelo/citología , Cerebelo/efectos de los fármacos , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Microscopía Electrónica de Transmisión , NADPH Oxidasas/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Estrés Oxidativo , Ratas , Ratas Wistar , Estaurosporina/farmacología
15.
Patient Educ Couns ; 103(7): 1399-1406, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32019696

RESUMEN

OBJECTIVES: The current study examined the impact of physician humility on future medical interactions and physician-related outcomes (e.g., patient patronage, loyalty) using a non-patient, community sample. METHODS: Participants (N = 417) were recruited online through Amazon Mechanical Turk (mTurk) and paid a nominal fee for their participation. They reviewed randomly assigned fictitious physician profiles that differed in humility (high, low), general effectiveness (high, low), physician gender (male, female), and specialty (family practice, orthopedic surgery). Then they reported their likelihood to trust, adhere to recommendations, and be satisfied with the physician. They also conveyed how likely they would select and recommend this physician to others, and how much out-of-pocket money they would be willing to spend to see the physician. RESULTS: Humble physicians were rated higher than their non-humble counterparts on all five outcomes. For physicians who were generally ineffective, the physicians low in humility scored lower on intended adherence, trust, and anticipated satisfaction than the physicians high in humility. Additionally, for physicians specializing in family practice, physicians low in humility scored lower on anticipated satisfaction and out-of-pocket expenditure than the physicians high in humility. CONCLUSIONS: Findings from this study highlight how physician humility can affect the process of care even before it begins. PRACTICE IMPLICATIONS: The study emphasizes the need for deliberate pursuit of humility to improve outcomes for patients and physicians.


Asunto(s)
Prioridad del Paciente , Médicos , Femenino , Humanos , Masculino , Satisfacción del Paciente , Relaciones Médico-Paciente , Confianza
16.
Neuron ; 107(1): 3-5, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32645307

RESUMEN

Loss-of-function variants in the PYRC2 gene cause hypomyelinating leukodystrophy 10 (HLD10), but the associated pathogenic mechanisms are unknown. In this issue of Neuron, Escande-Beillard et al. (2020) reveal that PYRC2 is a key enzyme for proper brain development and a regulator of glycine homeostasis, uncovering hyperglycinemia as a driver of HLD10 pathogenesis.


Asunto(s)
Encefalopatías/metabolismo , Glicina , Ubiquitina-Proteína Ligasas/metabolismo , Humanos , Pirrolina Carboxilato Reductasas
17.
J Neurosci Res ; 87(11): 2531-40, 2009 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-19360906

RESUMEN

Neuronal apoptotic death involves the participation of reactive oxygen species (ROS), but their sources have not been completely elucidated. Previous studies have demonstrated that the ROS-producing enzyme NADPH oxidase is present in neuronal cells and that this enzyme could participate in the apoptotic neuronal death. Cerebellar granule neurons (CGN) undergo apoptosis when cells are transferred from a medium with 25 mM KCl (K25) to a 5 mM KCl (K5) medium or when they are treated with staurosporine (ST). Under these conditions, apoptotic death of CGN is dependent on ROS production. In this study, we evaluated the role of NOX2, an NADPH oxidase homolog, in the apoptotic death of CGN induced by two different conditions. In CGN from NOX2-deficient (ko) mice, a significantly lower rate of apoptotic death occurs compared with wild-type (wt) CGN. Also, caspase-3 activation, NADPH oxidase activity, and superoxide anion production induced by ST were markedly lower in ko neurons than in wt CGN. In contrast to the case with ST, when CGN were treated with K5, no differences were observed between ko and wt cells in any of the parameters measured. However, all NADPH oxidase inhibitors tested noticeably reduced cell death and apoptotic parameters induced by K5 in both wt and ko CGN. These results suggest that NOX2 could be necessary for apoptotic death induced by ST, but not by K5, which could require other member of the NOX family in the apoptotic process.


Asunto(s)
Apoptosis/fisiología , Cerebelo/fisiopatología , Glicoproteínas de Membrana/metabolismo , NADPH Oxidasas/metabolismo , Neuronas/fisiología , Deficiencia de Potasio/fisiopatología , Estaurosporina/toxicidad , Animales , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Células Cultivadas , Cerebelo/efectos de los fármacos , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , NADH NADPH Oxidorreductasas/metabolismo , NADPH Oxidasa 1 , NADPH Oxidasa 2 , NADPH Oxidasa 4 , NADPH Oxidasas/antagonistas & inhibidores , NADPH Oxidasas/genética , Neuronas/efectos de los fármacos , Neurotoxinas/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Superóxidos/metabolismo
18.
J Vis Exp ; (154)2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31904025

RESUMEN

Organotypic slice culture is a powerful in vitro model that mimicks in vivo conditions more closely than dissociated primary cell cultures. In early postnatal development, cerebellar Purkinje cells are known to go through a vulnerable period, during which they undergo programmed cell death. Here, we provide a detailed protocol to perform mouse organotypic cerebellar slice culture during this critical time. The slices are further labeled to assess Purkinje cell survival and the efficacy of neuroprotective treatments. This method can be extremely valuable to screen for new neuroactive molecules.


Asunto(s)
Células de Purkinje/fisiología , Animales , Supervivencia Celular , Ratones , Técnicas de Cultivo de Órganos
19.
Front Cell Neurosci ; 13: 385, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31481879

RESUMEN

Autism Spectrum Disorder (ASD) is one of the most prevalent neurodevelopmental disorders, affecting an estimated 1 in 59 children. ASD is highly genetically heterogeneous and may be caused by both inheritable and de novo gene variations. In the past decade, hundreds of genes have been identified that contribute to the serious deficits in communication, social cognition, and behavior that patients often experience. However, these only account for 10-20% of ASD cases, and patients with similar pathogenic variants may be diagnosed on very different levels of the spectrum. In this review, we will describe the genetic landscape of ASD and discuss how genetic modifiers such as copy number variation, single nucleotide polymorphisms, and epigenetic alterations likely play a key role in modulating the phenotypic spectrum of ASD patients. We also consider how genetic modifiers can alter convergent signaling pathways and lead to impaired neural circuitry formation. Lastly, we review sex-linked modifiers and clinical implications. Further understanding of these mechanisms is crucial for both comprehending ASD and for developing novel therapies.

20.
Sci Rep ; 9(1): 16875, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31728030

RESUMEN

The higher-order architecture observed in biological systems, like viruses, is very effective in nucleic acid transport. The replications of this system has been attempted with both synthetic and naturally occurring polymers with mixed results. Here we describe a peptide/siRNA quaternary complex that functions as an siRNA delivery system. The rational design of a peptide assembly is inspired by the viral capsids, but not derived from them. We selected the collagen peptide (COL) to provide the structural stability and the folding framework, and hybridize it with the cell penetrating peptide (CPP) that allows for effective penetration of biological barriers. The peptide/siRNA quaternary complex forms stoichiometric, 10 nm nanoparticles, that show fast cellular uptake (<30 min), effective siRNA release, and gene silencing. The complex provides capsid-like protection for siRNA against nucleases without being immunostimulatory, or cytotoxic. Our data suggests that delivery vehicles based on synthetic quaternary structures that exhibit higher-order architecture may be effective in improving delivery and release of nucleic acid cargo.


Asunto(s)
Péptidos de Penetración Celular/metabolismo , Colágeno/metabolismo , Silenciador del Gen , Técnicas de Transferencia de Gen , Polímeros/metabolismo , ARN Interferente Pequeño/genética , Animales , Transporte Biológico , Materiales Biomiméticos/química , Materiales Biomiméticos/metabolismo , Cápside/química , Carbocianinas/química , Carbocianinas/metabolismo , Péptidos de Penetración Celular/química , Colágeno/química , Fluoresceína-5-Isotiocianato/química , Fluoresceína-5-Isotiocianato/metabolismo , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Genes Reporteros , Proteínas Fluorescentes Verdes/antagonistas & inhibidores , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Hidroxiprolina/química , Hidroxiprolina/metabolismo , Ratones , Conformación Molecular , Células 3T3 NIH , Nanopartículas/química , Polímeros/química , ARN Interferente Pequeño/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda