RESUMEN
BACKGROUND: Pancreatic adenocarcinoma (PAAD) is a malignant tumor responsible for a heavy disease burden. Previously, only one pan-cancer study of Transmembrane channel-like protein 5 (TMC5) showed that TMC5 was highly expressed in PAAD, but the results lacked comprehensive verification, and the mechanism of TMC5 in PAAD was still unclear. METHODS: For exploring the expression and clinical value of TMC5 in PAAD better, we adopted a comprehensive evaluation method, using internal immunohistochemistry (IHC) data combined with microarray and RNA-sequencing data collected from public databases. The single cell RNA-sequencing (scRNA-seq) data were exploited to explore the TMC5 expression in cell populations and intercellular communication. The potential mechanism of TMC5 in PAAD was analyzed from the aspects of immune infiltration, transcriptional regulation, function and pathway enrichment. RESULTS: Our IHC data includes 148 PAAD samples and 19 non-PAAD samples, along with the available microarray and RNA-sequencing data (1166 PAAD samples, 704 non-PAAD samples). The comprehensive evaluation results showed that TMC5 was evidently up-regulated in PAAD (SMD = 1.17). Further analysis showed that TMC5 was over-expressed in cancerous epithelial cells. Furthermore, TMC5 was up-regulated in more advanced tumor T and N stages. Interestingly, we found that STAT3 as an immune marker of Th17 cells was not only positively correlated with TMC5 and up-regulated in PAAD tissues, but also the major predicted TMC5 transcription regulator. Moreover, STAT3 was involved in cancer pathway of PAAD. CONCLUSION: Up-regulated TMC5 indicates advanced tumor stage in PAAD patients, and its role in promoting PAAD development may be regulated by STAT3.
Asunto(s)
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Adenocarcinoma/genética , Neoplasias Pancreáticas/genética , Comunicación Celular , Costo de Enfermedad , Pronóstico , Regulación Neoplásica de la Expresión Génica , Neoplasias PancreáticasRESUMEN
BACKGROUND: Centrosomal protein 55 (CEP55) plays a significant role in specific cancers. However, comprehensive research on CEP55 is lacking in pan-cancer. METHODS: In-house and multi-center samples (n = 15,823) were used to analyze CEP55 in 33 cancers. The variance of CEP55 expression levels among tumor and control groups was evaluated by the Wilcoxon rank-sum test and standardized mean difference (SMD). The clinical value of CEP55 in cancers was assessed using receiver operating characteristic (ROC) curves, Cox regression analysis, and Kaplan-Meier curves. The correlations between CEP55 expression and the immune microenvironment were explored using Spearman's correlation coefficient. RESULTS: The data of clustered regularly interspaced short palindromic repeats confirmed that CEP55 was essential for the survival of cancer cells in multiple cancer types. Elevated CEP55 mRNA expression was observed in 20 cancers, including glioblastoma multiforme (p < 0.05). CEP55 mRNA expression made it feasible to distinguish 21 cancer types between cancer specimens and their control samples (AUC = 0.97), indicating the potential of CEP55 for predicting cancer status. Overexpression of CEP55 was correlated with the prognosis of cancer individuals for 18 cancer types, exhibiting its prognostic value. CEP55 expression was relevant to tumor mutation burden, microsatellite instability, neoantigen counts, and the immune microenvironment in various cancers (p < 0.05). The expression level and clinical relevance of CEP55 in cancers were verified in lung squamous cell carcinoma using in-house and multi-center samples (SMD = 4.07; AUC > 0.95; p < 0.05). CONCLUSION: CEP55 may be an immune-related predictive and prognostic marker for multiple cancers, including lung squamous cell carcinoma.
Asunto(s)
Carcinoma de Células Escamosas , Humanos , Pronóstico , Carcinoma de Células Escamosas/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , ARN Mensajero/genética , Microambiente Tumoral/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismoRESUMEN
Integrin beta 4 (ITGB4) is a vital factor for numerous cancers. However, no reports regarding ITGB4 in small cell lung carcinoma (SCLC) have been found in the existing literature. This study systematically investigated the expression and clinical value of ITGB4 in SCLC using multi-center and large-sample (n = 963) data. The ITGB4 expression levels between SCLC and control tissues were compared using standardized mean difference and Wilcoxon rank-sum test. The clinical significance of the gene in SCLC was observed using Cox regression and Kaplan-Meier curves. ITGB4 is overexpressed in multiple cancers and represents significant value in distinguishing among cancer samples (AUC = 0.91) and predicting the prognoses (p < 0.05) of patients with different cancers. In contrast, decreased ITGB4 mRNA expression was determined in SCLC (SMD < 0), and this finding was further confirmed at protein levels using in-house specimens (p < 0.05). This decrease in expression may be attributed to the regulatory role of estrogen receptor 1. ITGB4 may participate in the progression of SCLC by affecting several signaling pathways (e.g., tumor necrosis factor signaling pathway) and a series of immune cells (e.g., dendritic cells) (p < 0.05). The gene may serve as a potential marker for predicting the disease status (AUC = 0.97) and prognoses (p < 0.05) of patients with SCLC. Collectively, ITGB4 was identified as an identification and prognosis marker associated with immune infiltration in SCLC.
RESUMEN
BACKGROUND: At present, studies on MircoRNA-22-3p (miR-22-3p) in lung adenocarcinoma use a single method, lack multi-center validation and multi-method validation, and there is no big data concept to predict and validate target genes. OBJECTIVE: To investigate the expression, potential targets and clinicopathological significance of miR-22-3p in lung adenocarcinoma (LUAD) tissues. METHODS: LUAD formalin-fixed paraffin-embedded (FFPE) tumors and adjacent normal lung tissues were collected for real-time quantitative polymerase chain reaction (RT-qPCR). Collect miR-22-3p in LUAD and non-cancer lung tissue from high-throughput datasets, standardized mean difference (SMD) and area under the curve (AUC) of the comprehensive receiver operating curve (summary receiver operating characteristic cure, sROC curve) were calculated. Cell function experiments on A549 cells transfected with LV-hsa-miR-22-3p. Target genes were predicted by the miRwalk2.0 website and the resulting target genes were subjected to Gene Ontology (GO) pathway enrichment analysis and constructed to protein-protein interaction network. Finally, the protein expression level of the key gene TP53 was validated by searching The Human Protein Atlas (THPA) database to incorporate TP53 immunohistochemical results in LUAD. RESULTS: RT-qPCR result from 41 pairs of LUAD and adjacent lung tissues showed that miR-22-3p was downregulated in LUAD (AUC = 0.6597, p= 0.0128). Globally, a total of 838 LUADs and 494 non-cancerous lung tissues were included, and were finally combined into 14 platforms. Compared with noncancerous tissue, miR-22-3p expression level was significantly reduced in LUAD tissue (SMD =-0.32, AUC = 0.72l); cell function experiments showed that miR-22-3p has inhibitory effects on cell proliferation, migration and invasion, and has promotion effect on apoptosis. Moreover, target genes prediction, GO pathway enrichment analysis and PPI network exhibited TP53 as a key gene of target gene of miR-22-3p; at last, a total of 114 high-throughput datasets were included, including 3897 LUADs and 2993 non-cancerous lung tissues, and were finally combined into 37 platforms. Compared with noncancerous tissue, TP53 expression level was significantly increased in LUAD (SMD = 0.39, p< 0.01) and it was verified by the protein expression data from THPA. CONCLUSION: Overexpression of miR-22-3p may inhibit LUAD cell proliferation, migration and invasion through TP53, and promote cell apoptosis.
Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Relevancia Clínica , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Pulmón/patología , Proliferación Celular/genética , Proteína p53 Supresora de Tumor/genéticaRESUMEN
Background: Worldwide, lung squamous cell carcinoma (LUSC) has wreaked havoc on humanity. Matrix metallopeptidase 12 (MMP12) plays an essential role in a variety of cancers. This study aimed to reveal the expression, clinical significance, and potential molecular mechanisms of MMP12 in LUSC. Methods: There were 2,738 messenger RNA (mRNA) samples from several multicenter databases used to detect MMP12 expression in LUSC, and 125 tissue samples were validated by immunohistochemistry (IHC) experiments. Receiver operator characteristic (ROC) curves, Kaplan-Meier curves, and univariate and multivariate Cox regression analyses were used to assess the clinical value of MMP12 in LUSC. The potential molecular mechanisms of MMP12 were explored by gene enrichment analysis and immune correlation analysis. Furthermore, single-cell sequencing was used to determine the distribution of MMP12 in multiple tumor microenvironment cells. Results: MMP12 was significantly overexpressed at the mRNA level (p < 0.05, SMD = 3.13, 95% CI [2.51-3.75]), which was verified at the protein level (p < 0.001) by internal IHC experiments. MMP12 expression could be used to differentiate LUSC samples from normal samples, and overexpression of MMP12 itself implied a worse clinical prognosis and higher levels of immune cell infiltration in LUSC patients. MMP12 was involved in cancer development and progression through two immune-related signaling pathways. The high expression of MMP12 in LUSC might act as an antigen-presenting cell-associated tumor neoantigen and activate the body's immune response. Conclusions: MMP12 expression is upregulated in LUSC and high expression of MMP12 serves as a risk factor for LUSC patients. MMP12 may be involved in cancer development by participating in immune-related signaling pathways and elevating the level of immune cell infiltration.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Carcinoma de Células Escamosas/genética , Pulmón , Neoplasias Pulmonares/diagnóstico , Metaloproteinasa 12 de la Matriz/genética , Pronóstico , Microambiente Tumoral/genéticaRESUMEN
Background: The treatment and survival rate of patients with metastatic prostate cancer (MPCa) remain unsatisfactory. Herein, the authors investigated the clinical value and potential mechanisms of cadherin EGF LAG seven-pass G-type receptor 3 (CELSR3) in MPCa to identify novel targets for clinical diagnosis and treatment. Materials and Methods: mRNA microarray and RNA-Seq (n = 1246 samples) data were utilized to estimate CELSR3 expression and to assess its differentiation ability in MPCa. Similar analyses were performed with miRNA-221-3p. Immunohistochemistry performed on clinical samples were used to evaluate the protein expression level of CELSR3 in MPCa. Based on CELSR3 differentially coexpressed genes (DCEGs), enrichment analysis was performed to investigate potential mechanisms of CELSR3 in MPCa. Results: The pooled standard mean difference (SMD) for CELSR3 was 0.80, demonstrating that CELSR3 expression was higher in MPCa than in localized prostate cancer (LPCa). CELSR3 showed moderate potential to distinguish MPCa from LPCa. CELSR3 protein expression was found to be markedly upregulated in MPCa than in LPCa tissues. The authors screened 894 CELSR3 DCEGs, which were notably enriched in the focal adhesion pathway. miRNA-221-3p showed a significantly negative correlation with CELSR3 in MPCa. Besides, miRNA-221-3p expression was downregulated in MPCa than in LPCa (SMD = -1.04), and miRNA-221-3p was moderately capable of distinguishing MPCa from LPCa. Conclusions: CELSR3 seems to play a pivotal role in MPCa by affecting the focal adhesion pathway and/or being targeted by miRNA-221-3p.
Asunto(s)
Cadherinas , MicroARNs , Neoplasias de la Próstata , Receptores de Superficie Celular , Cadherinas/genética , Minería de Datos , Humanos , Inmunohistoquímica , Masculino , MicroARNs/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Receptores de Superficie Celular/genéticaRESUMEN
Hepatocellular carcinoma (HCC) is a leading cause of mortality in cancer patients, but the association between miR-125b-2-3p and the onset and prognosis of HCC has not been reported in previous studies; thus, the clinicopathological implications of miR-125b-2-3p in HCC require elaboration. To examine the expression of miR-125b-2-3p in HCC, both in-house RT-qPCR and public datasets were used to calculate the standard mean difference (SMD) and the summary receiver operating characteristic (sROC). MiR-125b-2-3p was markedly lower in HCC than in non-tumor tissue as assessed by the in-house RT-qPCR which was confirmed by the integrative analysis showing the SMD being -0.69 and the area under the curve (AUC) being 0.84 based on 1,233 cases of HCC and 630 cases of non-HCC controls. To gain a overview of the clinical value of miR-125b-2-3p in HCC, all possible datasets were integrated, and lower miR-125b-2-3p levels could lead to poorer differentiation and a more advanced clinical stage of HCC. The hazard ratio (HR) of miR-125b-2-3p was also calculated using a Cox proportional hazards model, and the miR-125b-2-3p level could act as an protective indication for the survival with the HR being 0.74 based on 586 cases of HCC. Furthermore, the effect of nitidine chloride (NC), a natural bioactive phytochemical alkaloid, on the regulation of miR-125b-2-3p and its potential targets was also investigated. The miR-125b-2-3p level was increased after NC treatment, while the expression of its potential target PRKCA was reduced. Above all, a low-expressed level of miR-125b-2-3p plays a tumor suppressive role in HCC.