Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Cell ; 165(7): 1672-1685, 2016 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-27315481

RESUMEN

Long intergenic noncoding RNAs (lincRNAs) are important regulators of gene expression. Although lincRNAs are expressed in immune cells, their functions in immunity are largely unexplored. Here, we identify an immunoregulatory lincRNA, lincRNA-EPS, that is precisely regulated in macrophages to control the expression of immune response genes (IRGs). Transcriptome analysis of macrophages from lincRNA-EPS-deficient mice, combined with gain-of-function and rescue experiments, revealed a specific role for this lincRNA in restraining IRG expression. Consistently, lincRNA-EPS-deficient mice manifest enhanced inflammation and lethality following endotoxin challenge in vivo. lincRNA-EPS localizes at regulatory regions of IRGs to control nucleosome positioning and repress transcription. Further, lincRNA-EPS mediates these effects by interacting with heterogeneous nuclear ribonucleoprotein L via a CANACA motif located in its 3' end. Together, these findings identify lincRNA-EPS as a repressor of inflammatory responses, highlighting the importance of lincRNAs in the immune system.


Asunto(s)
Regulación de la Expresión Génica , Inflamación/genética , Macrófagos/inmunología , ARN Largo no Codificante/metabolismo , Animales , Cromátides/metabolismo , Eliminación de Gen , Humanos , Listeria monocytogenes/fisiología , Listeriosis/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Macrófagos/virología , Ratones , Ratones Endogámicos C57BL , ARN Largo no Codificante/genética , Infecciones por Respirovirus/inmunología , Virus Sendai/fisiología , Receptores Toll-Like/metabolismo , Transcriptoma
2.
J Neuroinflammation ; 15(1): 256, 2018 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-30189875

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a chronic neurodegenerative disease with pathological hallmarks including the formation of extracellular aggregates of amyloid-beta (Aß) known as plaques and intracellular tau tangles. Coincident with the formation of Aß plaques is recruitment and activation of glial cells to the plaque forming a plaque niche. In addition to histological data showing the formation of the niche, AD genetic studies have added to the growing appreciation of how dysfunctional glia pathways drive neuropathology, with emphasis on microglia pathways. Genomic approaches enable comparisons of human disease profiles between different mouse models informing on their utility to evaluate secondary changes to triggers such as Aß deposition. METHODS: In this study, we utilized two animal models of AD to examine and characterize the AD-associated pathology: the Tg2576 Swedish APP (KM670/671NL) and TgCRND8 Swedish plus Indiana APP (KM670/671NL + V717F) lines. We used laser capture microscopy (LCM) to isolate samples surrounding Thio-S positive plaques from distal non-plaque tissue. These samples were then analyzed using RNA sequencing. RESULTS: We determined age-associated transcriptomic differences between two similar yet distinct APP transgenic mouse models, known to differ in proportional amyloidogenic species and plaque deposition rates. In Tg2576, human AD gene signatures were not observed despite profiling mice out to 15 months of age. TgCRND8 mice however showed progressive and robust induction of lysomal, neuroimmune, and ITIM/ITAM-associated gene signatures overlapping with prior human AD brain transcriptomic studies. Notably, RNAseq analyses highlighted the vast majority of transcriptional changes observed in aging TgCRND8 cortical brain homogenates were in fact specifically enriched within the plaque niche samples. Data uncovered plaque-associated enrichment of microglia-related genes such as ITIM/ITAM-associated genes and pathway markers of phagocytosis. CONCLUSION: This work may help guide improved translational value of APP mouse models of AD, particularly for strategies aimed at targeting neuroimmune and neurodegenerative pathways, by demonstrating that TgCRND8 more closely recapitulates specific human AD-associated transcriptional responses.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Corteza Cerebral/metabolismo , Citocinas/metabolismo , Regulación de la Expresión Génica/genética , Factores de Edad , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Animales , Proteínas de Unión al Calcio/metabolismo , Corteza Cerebral/patología , Correlación de Datos , Modelos Animales de Enfermedad , Humanos , Captura por Microdisección con Láser , Ratones , Ratones Transgénicos , Proteínas de Microfilamentos/metabolismo , Mutación/genética , Placa Amiloide/patología , ARN Mensajero/metabolismo , Transcriptoma
3.
J Lipid Res ; 52(2): 221-36, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21097823

RESUMEN

The lipid droplet-associated fat specific protein 27 (FSP27) suppresses lipolysis and thereby enhances triglyceride accumulation in adipocytes. We and others have recently found FSP27 to be a remarkably short-lived protein (half-life, 15 min) due to its rapid ubiquitination and proteasomal degradation. Thus, we tested the hypothesis that lipolytic agents such as tumor necrosis factor-α (TNF-α) and isoproterenol modulate FSP27 levels to regulate FFA release. Consistent with this concept, we showed that the lipolytic actions of TNF-α, interleukin-1ß (IL-1ß), and IFN-γ are accompanied by marked decreases in FSP27 expression and lipid droplet size in mouse adipocytes. Similar depletion of FSP27 using short interfering RNA (siRNA) mimicked the lipolysis-enhancing effect of TNF-α, while maintaining stable FSP27 levels using expression of hemagglutinin epitope-tagged FSP27 blocked TNF-α-mediated lipolysis. In contrast, we show the robust lipolytic action of isoproterenol is paradoxically associated with increases in FSP27 levels and a delayed degradation rate corresponding to decreased ubiquitination. This catecholamine-mediated increase in FSP27 abundance, probably a feedback mechanism for restraining excessive lipolysis by catecholamines, is mimicked by forskolin or 8-bromo-cAMP treatment and is prevented by the protein kinase A (PKA) inhibitor KT5720 or by PKA depletion using siRNA. Taken together, these data identify the regulation of FSP27 as an important intermediate in the mechanism of lipolysis in adipocytes in response to TNF-α and isoproterenol.


Asunto(s)
Isoproterenol/farmacología , Lipólisis/efectos de los fármacos , Proteínas/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Células 3T3-L1 , Animales , Ratones , Proteínas/efectos de los fármacos , Ubiquitinación/efectos de los fármacos
4.
Science ; 341(6147): 789-92, 2013 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-23907535

RESUMEN

An inducible program of inflammatory gene expression is central to antimicrobial defenses. This response is controlled by a collaboration involving signal-dependent activation of transcription factors, transcriptional co-regulators, and chromatin-modifying factors. We have identified a long noncoding RNA (lncRNA) that acts as a key regulator of this inflammatory response. Pattern recognition receptors such as the Toll-like receptors induce the expression of numerous lncRNAs. One of these, lincRNA-Cox2, mediates both the activation and repression of distinct classes of immune genes. Transcriptional repression of target genes is dependent on interactions of lincRNA-Cox2 with heterogeneous nuclear ribonucleoprotein A/B and A2/B1. Collectively, these studies unveil a central role of lincRNA-Cox2 as a broad-acting regulatory component of the circuit that controls the inflammatory response.


Asunto(s)
Regulación de la Expresión Génica , Inmunidad Innata/genética , Inflamación/genética , Macrófagos/inmunología , Macrófagos/metabolismo , ARN Largo no Codificante/genética , Animales , Línea Celular , Núcleo Celular/metabolismo , Ciclooxigenasa 2/genética , Citocinas/genética , Citocinas/metabolismo , Citosol/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Activación de Macrófagos , Ratones , Modelos Inmunológicos , Interferencia de ARN , ARN Largo no Codificante/metabolismo , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Activación Transcripcional
5.
Mol Biol Cell ; 23(2): 337-46, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22114349

RESUMEN

Trafficking of protein and lipid cargo through the secretory pathway in eukaryotic cells is mediated by membrane-bound vesicles. Secretory vesicle targeting and fusion require a conserved multisubunit protein complex termed the exocyst, which has been implicated in specific tethering of vesicles to sites of polarized exocytosis. The exocyst is directly involved in regulating soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE) complexes and membrane fusion through interactions between the Sec6 subunit and the plasma membrane SNARE protein Sec9. Here we show another facet of Sec6 function-it directly binds Sec1, another SNARE regulator, but of the Sec1/Munc18 family. The Sec6-Sec1 interaction is exclusive of Sec6-Sec9 but compatible with Sec6-exocyst assembly. In contrast, the Sec6-exocyst interaction is incompatible with Sec6-Sec9. Therefore, upon vesicle arrival, Sec6 is proposed to release Sec9 in favor of Sec6-exocyst assembly and to simultaneously recruit Sec1 to sites of secretion for coordinated SNARE complex formation and membrane fusion.


Asunto(s)
Exocitosis , Proteínas Munc18/metabolismo , Proteínas SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Proteínas de Transporte Vesicular/metabolismo , Fusión de Membrana , Subunidades de Proteína/metabolismo , Proteínas Qc-SNARE/metabolismo , Saccharomyces cerevisiae/metabolismo
6.
Mol Cell Biol ; 31(14): 2774-86, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21606198

RESUMEN

In multiple tumor types, activation of the transcription factor NF-κB increases the resistance of tumor cells to anticancer therapies and contributes to tumor progression. Genotoxic stress induced by chemotherapy or radiation therapy triggers the ATM-dependent translocation of NF-κB essential modifier (NEMO), also designated IκB kinase γ (IKKγ), from the nucleus to the cytosol, resulting in IκB kinase activation by mechanisms not yet fully understood. RIP1 has been implicated in this response and found to be modified in cells with damaged DNA; however, the nature of the RIP1 modification and its precise role in the pathway remain unclear. Here, we show that DNA damage stimulates the formation of a cytosolic complex containing ATM, NEMO (IKKγ), RIP1, and TAK1. We find that RIP1 is modified by SUMO-1 and ubiquitin in response to DNA damage and demonstrate that modified RIP1 is required for NF-κB activation and tumor cell survival. We show that ATM activates TAK1 in a manner dependent on RIP1 and NEMO. We also reveal TAK1 as a central mediator of the alternative DNA damage response pathway mediated by the p38 mitogen-activated protein kinase (MAPK)/MAPK-activated protein 2 (MAPKAP-2) kinases. These findings have translational implications and reveal RIP1 and TAK1 as potential therapeutic targets in chemoresistance.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , FN-kappa B/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Antibióticos Antineoplásicos/metabolismo , Antineoplásicos Fitogénicos/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/genética , Células Cultivadas , Proteínas de Unión al ADN/genética , Doxorrubicina/metabolismo , Etopósido/metabolismo , Proteínas Activadoras de GTPasa/genética , Silenciador del Gen , Humanos , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Quinasas Quinasa Quinasa PAM/genética , Ratones , Ratones Noqueados , Proteína Quinasa 1 Activada por Mitógenos/genética , Complejos Multiproteicos/metabolismo , FN-kappa B/genética , Proteínas Serina-Treonina Quinasas/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Ubiquitina/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética
7.
Dev Cell ; 21(6): 1156-70, 2011 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-22172676

RESUMEN

Vesicle transport requires four steps: vesicle formation, movement, tethering, and fusion. In yeast, two Rab GTPases, Ypt31/32, are required for post-Golgi vesicle formation. A third Rab GTPase, Sec4, and the exocyst act in tethering and fusion of these vesicles. Vesicle production is coupled to transport via direct interaction between Ypt31/32 and the yeast myosin V, Myo2. Here we show that Myo2 interacts directly with Sec4 and the exocyst subunit Sec15. Disruption of these interactions results in compromised growth and the accumulation of secretory vesicles. We identified the Sec15-binding region on Myo2 and also identified residues on Sec15 required for interaction with Myo2. That Myo2 interacts with Sec15 uncovers additional roles for the exocyst as an adaptor for molecular motors and implies similar roles for structurally related tethering complexes. Moreover, these studies predict that for many pathways, molecular motors attach to vesicles prior to their formation and remain attached until fusion.


Asunto(s)
Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Sustitución de Aminoácidos , Sitios de Unión , Exocitosis , Fusión de Membrana , Modelos Moleculares , Proteínas Motoras Moleculares/metabolismo , Mutagénesis Sitio-Dirigida , Cadenas Pesadas de Miosina/química , Cadenas Pesadas de Miosina/genética , Miosina Tipo V/química , Miosina Tipo V/genética , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Vesículas Secretoras/metabolismo , Transducción de Señal , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética , Proteínas de Unión al GTP rab/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda