Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Bioinformatics ; 38(18): 4446-4448, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35900173

RESUMEN

SUMMARY: BioCaster was launched in 2008 to provide an ontology-based text mining system for early disease detection from open news sources. Following a 6-year break, we have re-launched the system in 2021. Our goal is to systematically upgrade the methodology using state-of-the-art neural network language models, whilst retaining the original benefits that the system provided in terms of logical reasoning and automated early detection of infectious disease outbreaks. Here, we present recent extensions such as neural machine translation in 10 languages, neural classification of disease outbreak reports and a new cloud-based visualization dashboard. Furthermore, we discuss our vision for further improvements, including combining risk assessment with event semantics and assessing the risk of outbreaks with multi-granularity. We hope that these efforts will benefit the global public health community. AVAILABILITY AND IMPLEMENTATION: BioCaster web-portal is freely accessible at http://biocaster.org.


Asunto(s)
Brotes de Enfermedades , Vigilancia de la Población , Vigilancia de la Población/métodos , Minería de Datos/métodos , Semántica
2.
Epidemics ; 46: 100744, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38324970

RESUMEN

BACKGROUND: Non-pharmaceutical interventions (NPIs) and vaccines have been widely used to manage the COVID-19 pandemic. However, uncertainty persists regarding the effectiveness of these interventions due to data quality issues, methodological challenges, and differing contextual factors. Accurate estimation of their effects is crucial for future epidemic preparedness. METHODS: To address this, we developed a population-based mechanistic model that includes the impact of NPIs and vaccines on SARS-CoV-2 transmission and hospitalization rates. Our statistical approach estimated all parameters in one step, accurately propagating uncertainty. We fitted the model to comprehensive epidemiological data in France from March 2020 to October 2021. With the same model, we simulated scenarios of vaccine rollout. RESULTS: The first lockdown was the most effective, reducing transmission by 84 % (95 % confidence interval (CI) 83-85). Subsequent lockdowns had diminished effectiveness (reduction of 74 % (69-77) and 11 % (9-18), respectively). A 6 pm curfew was more effective than one at 8 pm (68 % (66-69) vs. 48 % (45-49) reduction), while school closures reduced transmission by 15 % (12-18). In a scenario without vaccines before November 2021, we predicted 159,000 or 168 % (95 % prediction interval (PI) 70-315) more deaths and 1,488,000 or 300 % (133-492) more hospitalizations. If a vaccine had been available after 100 days, over 71,000 deaths (16,507-204,249) and 384,000 (88,579-1,020,386) hospitalizations could have been averted. CONCLUSION: Our results highlight the substantial impact of NPIs, including lockdowns and curfews, in controlling the COVID-19 pandemic. We also demonstrate the value of the 100 days objective of the Coalition for Epidemic Preparedness Innovations (CEPI) initiative for vaccine availability.


Asunto(s)
COVID-19 , Vacunas , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , SARS-CoV-2 , Control de Enfermedades Transmisibles , Pandemias/prevención & control , Francia/epidemiología
3.
JMIR Public Health Surveill ; 8(10): e36211, 2022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-36315218

RESUMEN

BACKGROUND: Robust and flexible infectious disease surveillance is crucial for public health. Event-based surveillance (EBS) was developed to allow timely detection of infectious disease outbreaks by using mostly web-based data. Despite its widespread use, EBS has not been evaluated systematically on a global scale in terms of outbreak detection performance. OBJECTIVE: The aim of this study was to assess the variation in the timing and frequency of EBS reports compared to true outbreaks and to identify the determinants of variability by using the example of seasonal influenza epidemic in 24 countries. METHODS: We obtained influenza-related reports between January 2013 and December 2019 from 2 EBS systems, that is, HealthMap and the World Health Organization Epidemic Intelligence from Open Sources (EIOS), and weekly virological influenza counts for the same period from FluNet as the gold standard. Influenza epidemic periods were detected based on report frequency by using Bayesian change point analysis. Timely sensitivity, that is, outbreak detection within the first 2 weeks before or after an outbreak onset was calculated along with sensitivity, specificity, positive predictive value, and timeliness of detection. Linear regressions were performed to assess the influence of country-specific factors on EBS performance. RESULTS: Overall, while monitoring the frequency of EBS reports over 7 years in 24 countries, we detected 175 out of 238 outbreaks (73.5%) but only 22 out of 238 (9.2%) within 2 weeks before or after an outbreak onset; in the best case, while monitoring the frequency of health-related reports, we identified 2 out of 6 outbreaks (33%) within 2 weeks of onset. The positive predictive value varied between 9% and 100% for HealthMap and from 0 to 100% for EIOS, and timeliness of detection ranged from 13% to 94% for HealthMap and from 0% to 92% for EIOS, whereas system specificity was generally high (59%-100%). The number of EBS reports available within a country, the human development index, and the country's geographical location partially explained the high variability in system performance across countries. CONCLUSIONS: We documented the global variation of EBS performance and demonstrated that monitoring the report frequency alone in EBS may be insufficient for the timely detection of outbreaks. In particular, in low- and middle-income countries, low data quality and report frequency impair the sensitivity and timeliness of disease surveillance through EBS. Therefore, advances in the development and evaluation and EBS are needed, particularly in low-resource settings.


Asunto(s)
Gripe Humana , Humanos , Gripe Humana/diagnóstico , Gripe Humana/epidemiología , Teorema de Bayes , Factores de Tiempo , Brotes de Enfermedades , Salud Pública
4.
Stud Health Technol Inform ; 294: 387-391, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35612102

RESUMEN

Information integration across multiple event-based surveillance (EBS) systems has been shown to improve global disease surveillance in experimental settings. In practice, however, integration does not occur due to the lack of a common conceptual framework for encoding data within EBS systems. We aim to address this gap by proposing a candidate conceptual framework for representing events and related concepts in the domain of public health surveillance.


Asunto(s)
Brotes de Enfermedades , Vigilancia en Salud Pública , Vigilancia de la Población , Salud Pública
5.
Int J Infect Dis ; 121: 1-10, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35477050

RESUMEN

BACKGROUND: Epidemics of COVID-19 strained hospital resources. We describe temporal trends in mortality risk and length of stays in hospital and intensive care units (ICUs) among patients with COVID-19 hospitalized through the first three epidemic waves in Canada. METHODS: We used population-based provincial hospitalization data from the epicenters of Canada's epidemics (Ontario and Québec). Adjusted estimates were obtained using marginal standardization of logistic regression models, accounting for patient-level and hospital-level determinants. RESULTS: Using all hospitalizations from Ontario (N = 26,538) and Québec (N = 23,857), we found that unadjusted in-hospital mortality risks peaked at 31% in the first wave and was lowest at the end of the third wave at 6-7%. This general trend remained after adjustments. The odds of in-hospital mortality in the highest patient load quintile were 1.2-fold (95% CI: 1.0-1.4; Ontario) and 1.6-fold (95% CI: 1.3-1.9; Québec) that of the lowest quintile. Mean hospital and ICU length of stays decreased over time but ICU stays were consistently higher in Ontario than Québec. CONCLUSIONS: In-hospital mortality risks and length of ICU stays declined over time despite changing patient demographics. Continuous population-based monitoring of patient outcomes in an evolving epidemic is necessary for health system preparedness and response.


Asunto(s)
COVID-19 , Epidemias , Estudios de Cohortes , Mortalidad Hospitalaria , Hospitalización , Humanos , Unidades de Cuidados Intensivos , Tiempo de Internación , Ontario/epidemiología , Quebec/epidemiología , Estudios Retrospectivos
6.
PLoS One ; 14(8): e0216442, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31430289

RESUMEN

Gene expression analysis of rare or heterogeneous cell populations such as disseminated cancer cells (DCCs) requires a sensitive method allowing reliable analysis of single cells. Therefore, we developed and explored the feasibility of a quantitative PCR (qPCR) assay to analyze single-cell cDNA pre-amplified using a previously established whole transcriptome amplification (WTA) protocol. We carefully selected and optimized multiple steps of the protocol, e.g. re-amplification of WTA products, quantification of amplified cDNA yields and final qPCR quantification, to identify the most reliable and accurate workflow for quantitation of gene expression of the ERBB2 gene in DCCs. We found that absolute quantification outperforms relative quantification. We then validated the performance of our method on single cells of established breast cancer cell lines displaying distinct levels of HER2 protein. The different protein levels were faithfully reflected by transcript expression across the tested cell lines thereby proving the accuracy of our approach. Finally, we applied our method to breast cancer DCCs of a patient undergoing anti-HER2-directed therapy. Here, we were able to measure ERBB2 expression levels in all HER2-protein-positive DCCs. In summary, we developed a reliable single-cell qPCR assay applicable to measure distinct levels of ERBB2 in DCCs.


Asunto(s)
Perfilación de la Expresión Génica , Análisis de la Célula Individual , Línea Celular Tumoral , Genes erbB-2/genética , Humanos , ARN Mensajero/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda