Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Inorg Chem ; 63(32): 15206-15214, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39082233

RESUMEN

In this work, two tin(II)-based sulfates, Sn2OSO4 and Sn3O2(OH)(HSO4), were synthesized via the mild hydrothermal method. Both compounds employ the Sn2+ cation with stereochemically active lone pair (SCALP) electrons and non-π-conjugated tetrahedral anionic groups SO4 as the functional structural blocks. Interestingly, the experimental birefringence of Sn3O2(OH)(HSO4) is 0.169@546 nm, approximately 42 times larger than that of Sn2OSO4, which is 0.004@546 nm. Detailed structural analysis and theoretical calculations suggest that this significant birefringence difference arises from the optimization of functional building blocks in coordination environments and spatial arrangements. Furthermore, both compounds exhibit ultraviolet absorption edges at 308 and 307 nm, respectively. This indicates that Sn3O2(OH)(HSO4) has the potential to be a candidate for an ultraviolet (UV) birefringent crystal. This study offers inspiration for further exploration of tin(II)-based compounds with excellent comprehensive properties.

2.
Molecules ; 29(13)2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38998922

RESUMEN

Volatile organic compounds (VOCs) are a class of hazardous gases that are widely present in the atmosphere and cause great harm to human health. In this paper, a ratiometric fluorescent probe (Dye@Eu-MOFs) based on a dye-functionalized metal-organic framework was designed to detect VOCs, which showed high sensitivity and specificity for acetaldehyde solution and vapor. A linear correlation between the integrated fluorescence intensity (I510/I616) and the concentration of acetaldehyde was investigated, enabling a quantitative analysis of acetaldehyde in the ranges of 1 × 10-4~10-5 µL/mL, with a low detection limit of 8.12 × 10-4 mg/L. The selective recognition of acetaldehyde could be clearly distinguished by the naked eye under the excitation of UV light. The potential sensing mechanism was also discussed. Significantly, a molecular logic gate was constructed based on the whole system, and finally, a molecular logic network system for acetaldehyde detection connecting basic and integrated logic operations was realized. This strategy provided an effective guiding method for constructing a molecular-level logic gate for acetaldehyde detection on a simple platform.

3.
Inorg Chem ; 62(22): 8500-8504, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37222550

RESUMEN

Two metal sulfate-oxalates, (Hgly)2·Zn(SO4)(C2O4) (1) and Hgly·In(SO4)(C2O4)(gly) (2), were prepared under solvent-free conditions, where gly = glycine. They have similar layered structures despite the fact that aliovalent metal ions are used as structural nodes. Notably, glycine molecules play dual roles as a protonated cation and a zwitterionic ligand in compound 2. The two compounds display moderate second-harmonic-generation (SHG) responses, confirming their noncentrosymmetric structures. Theoretical calculations were performed to reveal the origin of their SHG responses.

4.
Inorg Chem ; 62(23): 9130-9138, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37256655

RESUMEN

A novel mercury selenite sulfate named Hg3(SeO3)2(SO4) has been successfully synthesized under a mild hydrothermal method. Hg3(SeO3)2(SO4) crystallizes in a monoclinic space group P21 and features a unique three-dimensional (3D) frame structure formed by [Hg6O8(SeO3)4]∞ layers and SO4 tetrahedra, which enables it to exhibit a comprehensive performance of a moderate second-harmonic generation (SHG) response of approximately 1.3 times that of baseline KH2PO4 (KDP), a moderate birefringence (0.118@546 nm), and a wide band gap (4.70 eV), which indicates that it has potential for application as an ultraviolet (UV) nonlinear optical material. Detailed theoretical calculations show that the Hg2+-based polyhedra with large polarizability and deformability and the SeO3 groups with stereochemically active lone pair (SCALP) electrons are the main contributors to moderate optical properties.

5.
Inorg Chem ; 62(51): 21173-21180, 2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38078842

RESUMEN

Herein, three alkali metal mercury selenites, K2Hg2(SeO3)3, Rb2Hg2(SeO3)3, and Cs2Hg3(SeO3)4, were successfully obtained by a hydrothermal method. The three compounds featured same one-dimensional (1D) [HgOm(SeO3)n]∞ chain structure that consisting of distorted Hg-O polyhedra and SeO3 triangular pyramids with stereochemically active lone pair (SCALP) electrons. Interestingly, the rich coordination environment of Hg atoms and the size difference of alkali metal cations lead to diverse arrangement of SeO3 groups, which makes them exhibit different birefringence. The band gaps of the three compounds indicate that they are potential ultraviolet (UV) optical materials. Detailed theoretical calculations demonstrate that the combined effects of SeO3 triangular pyramids and Hg-O polyhedra are responsible for the optical characteristics of the reported compounds.

6.
Molecules ; 28(15)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37570824

RESUMEN

In this study, a red-green dual-emitting fluorescent composite (RhB@MOFs) was constructed by introducing the red-emitting organic fluorescent dye rhodamine B (RhB) into metal-organic frameworks (Tb-MOFs). The sample can be used as a ratiometric fluorescent probe, which not only avoids errors caused by instrument and environmental instability but also has multiple applications in detection. The results indicated that the RhB@MOFs exhibited a turned-off response toward Fe3+ and a turned-on response for the continuous detection of ascorbic acid (AA). This ratiometric fluorescent probe possessed high sensitivity and excellent selectivity in the continuous determination of Fe3+ and AA. It is worth mentioning that remarkable fluorescence change could be clearly observed by the naked eye under a UV lamp, which is more convenient in applications. In addition, the mechanisms of Fe3+- and AA-induced fluorescence quench and recovery are discussed in detail. This ratiometric probe displayed outstanding recognition of heavy metal ions and biomolecules, providing potential applications for water quality monitoring and biomolecule determination.

7.
Molecules ; 28(13)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37446579

RESUMEN

A novel fluorescent probe (C460@Tb-MOFs) was designed and synthesized by encapsulating the fluorescent dye 7-diethylamino-4-methyl coumarin (C460) into a terbium-based metal-organic framework using a simple ultrasonic impregnation method. It is impressive that this dye-modified metal-organic framework can specifically detect styrene and temperature upon luminescence quenching. The sensing platform of this material exhibits great selectivity, fast response, and good cyclability toward styrene detection. It is worth mentioning that the sensing process undergoes a distinct color change from blue to colorless, providing conditions for the accurate visual detection of styrene liquid and gas. The significant fluorescence quenching mechanism of styrene toward C460@Tb-MOFs is explored in detail. Moreover, the dye-modified metal-organic framework can also achieve temperature sensing from 298 to 498 K with high relative sensitivity at 498 K. The preparation of functionalized MOF composites with fluorescent dyes provides an effective strategy for the construction of sensors for multifunctional applications.


Asunto(s)
Colorantes Fluorescentes , Estructuras Metalorgánicas , Estireno , Temperatura , Terbio
8.
Molecules ; 28(11)2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37299041

RESUMEN

Nowadays, Mn4+-activated fluoride red phosphors with excellent luminescence properties have triggered tremendous attentions for enhancing the performance of white light-emitting diodes (WLEDs). Nonetheless, the poor moisture resistance of these phosphors impedes their commercialization. Herein, we proposed the dual strategies of "solid solution design" and "charge compensation" to design K2Nb1-xMoxF7 novel fluoride solid solution system, and synthesized the Mn4+-activated K2Nb1-xMoxF7 (0 ≤ x ≤ 0.15, x represents the mol % of Mo6+ in the initial solution) red phosphors via co-precipitation method. The doping of Mo6+ not only significantly improve the moisture resistance of the K2NbF7: Mn4+ phosphor without any passivation and surface coating, but also effectively enhance the luminescence properties and thermal stability. In particular, the obtained K2Nb1-xMoxF7: Mn4+ (x = 0.05) phosphor possesses the quantum yield of 47.22% and retains 69.95% of its initial emission intensity at 353 K. Notably, the normalized intensity of the red emission peak (627 nm) for the K2Nb1-xMoxF7: Mn4+ (x = 0.05) phosphor is 86.37% of its initial intensity after immersion for 1440 min, prominently higher than that of the K2NbF7: Mn4+ phosphor. Moreover, a high-performance WLED with high CRI of 88 and low CCT of 3979 K is fabricated by combining blue chip (InGaN), yellow phosphor (Y3Al5O12: Ce3+) and the K2Nb1-xMoxF7: Mn4+ (x = 0.05) red phosphor. Our findings convincingly demonstrate that the K2Nb1-xMoxF7: Mn4+ phosphors have a good practical application in WLEDs.


Asunto(s)
Fluoruros , Niobio , Luminiscencia
9.
Inorg Chem ; 61(31): 12481-12488, 2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35894629

RESUMEN

Birefringent materials with large birefringence play an important role in in laser science and technology owing to their ability to modulate polarized light. However, the lack of systematic and effective synthesis strategies severely hinders the development of novel superior birefringent materials. Herein, the cation-anion synergetic interaction strategy was proposed to successfully synthesize two excellent UV birefringent materials, RbSb(C2O4)F2·H2O and [C(NH2)3]Sb(C2O4)F2·H2O. Both compounds feature unprecedented [Sb(C2O4)F2]∞- anionic chains composed of planar π-conjugated [C2O4]2- units and a distorted SbO4F2 complex with stereochemically active lone pairs, which induce a large optical anisotropy. Remarkably, further enhancement of birefringence in [C(NH2)3]Sb(C2O4)F2·H2O was achieved via cation-anion synergetic interactions between the [C(NH2)3]+ cationic groups and [Sb(C2O4)F2]∞- anionic chains. It exhibited a giant birefringence of 0.323@546 nm, twice larger than that of its analogue RbSb(C2O4)F2·H2O (0.162@546 nm). A detailed structural analysis and theoretical calculations revealed that the cation-anion synergetic interaction strategy is an effective strategy for the efficient exploration of superior birefringent materials, which will guide the further exploration of new structure-driven functional materials.

10.
Molecules ; 27(15)2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35956753

RESUMEN

As an important biomarker in urine, the level of uric acid is of importance for human health. In this work, a Cu(II) functionalized metal-organic framework (Cu2+@Tb-MOFs) is designed and developed as a novel fluorescence probe for wide-range uric acid detection in human urine. The study shows that this fluorescence platform demonstrated excellent pH-independent stability, high water tolerance, and good thermal stability. Based on the strong interaction between metal ions and uric acid, the designed Cu2+@Tb-MOFs can be employed as efficient turn-on fluorescent probes for the detection of uric acid with wide detection range (0~104 µM) and high sensitivity (LOD = 0.65 µM). This probe also demonstrates an anti-interference property, as other species coexisted, and the possibility for recycling. The sensing mechanisms are further discussed at length. More importantly, we experimentally constructed a molecular logic gate operation based on this fluorescence probe for intelligent detection of uric acid. These results suggest the Cu(II) functionalized metal-organic framework can act as a prominent candidate for personalized monitoring of the concentration of uric acid in the human urine system.


Asunto(s)
Estructuras Metalorgánicas , Colorantes Fluorescentes , Humanos , Iones , Espectrometría de Fluorescencia/métodos , Ácido Úrico
11.
Molecules ; 27(19)2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36235080

RESUMEN

Thiodiglycolic acid (TDGA) is a biomarker for monitoring vinyl chloride exposure. Exploring a facile, rapid and precise analysis technology to quantify TDGA is of great significance. In this research, we demonstrate a fluorescent sensor based on dual-emissive UiO-66 for TDGA detection. This ratiometric fluorescent material named C460@Tb-UiO-66-(COOH)2 was designed and synthesized by introducing organic dye 7-diethylamino-4-methylcoumarin (C460) and Tb3+ into UiO-66-(COOH)2. The as-obtained C460@Tb-UiO-66-(COOH)2 samples showed highly selective recognition, excellent anti-interference and rapid response characteristics for the recognition of TDGA. The detection limit is 0.518 mg·mL-1, which is much lower than the threshold of 20 mg·mL-1 for a healthy person. In addition, the mechanism of TDGA-induced fluorescence quenching is discussed in detail. This sensor is expected to detect TDGA content in human urine.


Asunto(s)
Cloruro de Vinilo , Biomarcadores/orina , Humanos , Estructuras Metalorgánicas , Ácidos Ftálicos , Tioglicolatos
12.
Inorg Chem ; 60(11): 8322-8330, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-33990136

RESUMEN

The series of alkali-metal tin chloride sulfates A3Sn2(SO4)3-xCl1+2x (A = K, Rb, Cs; x = 0, 1), K3Sn2(SO4)3Cl, Rb3Sn2(SO4)2Cl3, and Cs3Sn2(SO4)2Cl3, were successfully synthesized through an improved mild hydrothermal method. Interestingly, in addition to the cation size effect, the structure-directing effect of anions induces different symmetries in the three title compounds, with K3Sn2(SO4)3Cl being noncentrosymmetric, while Rb3Sn2(SO4)2Cl3 and Cs3Sn2(SO4)2Cl3 are centrosymmetric. Powder second-harmonic generation (SHG) measurements indicate that K3Sn2(SO4)3Cl is a nonlinear optical material that is type I phase matchable with a weak SHG response (0.1× KDP). Photoluminescence tests reveal that the three title compounds emit strong greenish yellow, orange, and salmon light, respectively, under UV excitation, indicating that they are promising inorganic solid fluorescent materials. Simultaneously, a detailed structural analysis of all the known tin(II) halide sulfates has been performed, which will guide the systematic exploration of high-performance tin(II)-based functional materials in the future.

13.
Inorg Chem ; 59(24): 17906-17915, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33252238

RESUMEN

In this work, BaYF5:20%Yb3+/2%Er3+/x%Bi3+ (abbreviated as BaYF5:Yb,Er,Bix, where x = 0-3.0) upconversion nanoparticles (UCNPs) with various doping concentrations of Bi3+ were synthesized through a simple hydrothermal method. The influence of the doping amount of Bi3+ on the microstructures and upconversion luminescence (UCL) properties of the BaYF5:Yb,Er,Bix UCNPs was studied in detail. The doping concentration of Bi3+ has little influence on the microstructures of the UCNPs but significantly impacts their UCL intensities. Under excitation of a 980 nm near-IR laser, the observed UCL intensities for the BaYF5:Yb,Er,Bix UCNPs display first an increasing trend and then a decreasing trend with an increase in the ratio x, giving a maximum at x = 2.5. A possible energy-transfer process and simplified energy levels of the BaYF5:Yb,Er,Bix UCNPs were proposed. The potential of the BaYF5:Yb,Er,Bix UCNPs as contrast agents for computerized tomography (CT) imaging was successfully demonstrated. An obvious accumulation of BaYF5:Yb,Er,Bix in tumor sites was achieved because of high passive targeting by the enhanced permeability and retention effect and relatively low uptake by a reticuloendothelial system such as liver and spleen. This work paves a new route for the design of luminescence-enhanced UNCPs as promising bioimaging agents for cancer theranostics.


Asunto(s)
Bismuto/química , Medios de Contraste/síntesis química , Europio/química , Nanopartículas del Metal/química , Iterbio/química , Células A549 , Animales , Supervivencia Celular/efectos de los fármacos , Medios de Contraste/química , Humanos , Luminiscencia , Ratones , Tomografía Computarizada por Rayos X
14.
Inorg Chem ; 58(7): 4089-4092, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30859821

RESUMEN

Two crystalline zinc phosphates, formulated as Zn(HPO4)(dl-C5H9NO2) (SCU-3) and Zn(HPO4)(C2H5NO2) (SCU-10), were prepared under surfactant-thermal conditions using amino acids as structure-directing agents. Different from traditional zeolites with 4-connected nets, the two compounds have different 3-connected nets related to zeolite ABW. Powder second-harmonic-generation (SHG) measurement shows that SCU-10 is a nonlinear optically active solid with an SHG efficiency about 1.4 times that of KH2PO4.

15.
Inorg Chem ; 58(9): 5949-5955, 2019 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-30964679

RESUMEN

By introduction of K+, Rb+, and Cs+ cations into the classical commercial nonlinear optical crystal LiB3O5 (LBO), the series of novel mixed-alkali-metal borates Li2.6K0.4[B5O8(OH)2] (K-LBO), Li2.85Rb0.15[B5O8(OH)2] (Rb-LBO), and Li2.9Cs0.1[B5O8(OH)2] (Cs-LBO) have been obtained under hydrothermal conditions. The steric hindrance effect generated by the introduction of large alkali-metal cations and partial substitution of small Li+ cations broke the three-dimensional (3-D) framework of [B3O7]5- borate-oxygen clusters in LBO and resulted in a structure rearrangement to produce infrequent [B10O26]22- 2-D layers. The unique layered structure induced an increase in birefringence in A-LBOs (A = K, Rb, Cs), which is favorable for phase matching during second-harmonic generation. All three compounds are potential deep-ultraviolet nonlinear optical materials, which was proved by UV-vis-NIR diffuse reflectance spectroscopy and second-harmonic-generation measurements.

16.
Dalton Trans ; 53(23): 9675-9679, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38814118

RESUMEN

Two new histidine-templated metal phosphate-oxalates (MPOs) were prepared under solvent-free conditions. Single-crystal X-ray diffraction analysis reveals that they have layered and chainlike structures, respectively. Under ultraviolet light irradiation, the two MPOs exhibit blue luminescence originating from histidine templates. Their proton-conducting properties were also investigated under different conditions.

17.
Dalton Trans ; 53(6): 2619-2625, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38224003

RESUMEN

Birefringent materials play an important role in laser techniques as an essential part of optical devices. Therefore, the exploration of high-performance birefringent materials has been a central focus of researchers. Herein, two tin(II) fluoride oxalates Na4Sn4(C2O4)3F6 and NaSnC2O4F·H2O were gained by the combination of birefringence-active groups of Sn2+ with stereochemically active lone pairs and planar π-conjugated [C2O4]2- groups. These groups assemble into low-dimensional structures of 0D [C2O4F4]6- clusters and 1D [SnC2O4F]∞- chains in Na4Sn4(C2O4)3F6, and double [Sn2(C2O4)2F2]∞2- chains in NaSnC2O4F·H2O, which gives rise to the large birefringence of 0.160@546 nm and 0.189@546 nm, respectively. Detailed structure-property analysis and theoretical calculations indicate that strong optical anisotropy can be induced by the rational arrangement of the Sn2+-polyhedra and [C2O4]2- groups.

18.
Materials (Basel) ; 15(22)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36431418

RESUMEN

In this work, CDs@Eu-UiO-66(COOH)2 (denoted as CDs-F2), a fluorescent material made up of carbon dots (CDs) and a Eu3+ functionalized metal-organic framework, has been designed and prepared via a post-synthetic modification method. The synthesized CDs-F2 presents dual emissions at 410 nm and 615 nm, which can effectively avoid environmental interference. CDs-F2 exhibits outstanding selectivity, great sensitivity, and good anti-interference for ratiometric sensing Cu2+ in water. The linear range is 0-200 µM and the limit of detection is 0.409 µM. Interestingly, the CDs-F2's silicon plate achieves rapid and selective detection of Cu2+. The change in fluorescence color can be observed by the naked eye. These results reveal that the CDs-F2 hybrid can be employed as a simple, rapid, and sensitive fluorescent probe to detect Cu2+. Moreover, the possible sensing mechanism of this dual-emission fluorescent probe is discussed in detail.

19.
ACS Appl Mater Interfaces ; 13(11): 13311-13318, 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33689263

RESUMEN

The fermentation of biomass allows for the generation of major renewable ethanol biofuel that has high energy density favorable for direct alcohol fuel cells in alkaline media. However, selective conversion of ethanol to either CO2 or acetate remains a great challenge. Especially, the ethanol-to-acetate route usually demonstrates decentoxidation current density relative to the ethanol-to-CO2 route that contains strongly adsorbed poisons. This makes the total oxidation of ethanol to CO2 unnecessary. Here, we present a highly active ethanol oxidation electrocatalyst that was prepared by in situ decorating highly dispersed Mo sites on Pd nanosheets (MoOx/Pd) via a surfactant-free and facile route. We found that ∼2 atom % of Mo on Pd nanosheets increases the current density to 3.8 A mgPd-1, around 2 times more active relative to the undecorated Pd nanosheets, achieving nearly 100% faradic efficiency for the ethanol-to-acetate conversion in an alkaline electrolyte without the generation of detectable CO2, evidenced by in situ electrochemical infrared spectroscopy, nuclear magnetic resonance, and ion chromatography. The selective and CO2-free conversion offers a promising strategy through alcohol fuel cells for contributing comparable current density to power electrical equipment while for selective oxidation of biofuels to useful acetate intermediate for the chemical industry.

20.
Chem Commun (Camb) ; 56(69): 9982-9985, 2020 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-32720953

RESUMEN

A novel noncentrosymmetric (NCS) metal-free formic-borate, (NH4)3[B(OH)3]2(COOH)3, has been discovered, which exhibits an infrequent graphite-like structure. The alliance of two types of π-conjugated planar anions BO33- and COOH- produced an optimized layered structure to maximize the anisotropic polarizability, resulting in an extremely large birefringence (0.156@546 nm), larger than that of the classical commercial UV birefringent material α-BBO (0.122@546 nm). This strategy that structural optimization could enhance birefringence will guide the discovery of large birefringence materials, especially in the UV region.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda