Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nanotechnology ; 29(21): 215601, 2018 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-29485405

RESUMEN

This work introduces the anion exchange method into the sol-gel process for the first time to prepare a metal sulfide aerogel. A porous Co9S8 aerogel with a high surface area (274.2 m2 g-1) and large pore volume (0.87 cm3 g-1) has been successfully prepared by exchanging cobalt citrate wet gel in thioacetamide and subsequently drying in supercritical ethanol. Such a Co9S8 aerogel shows enhanced supercapacitive performance and catalytic activity toward oxygen evolution reaction (OER) compared to its oxide aerogel counterpart. High specific capacitance (950 F g-1 at 1 A g-1), good rate capability (74.3% capacitance retention from 1 to 20 A g-1) and low onset overpotential for OER (220 mV) were observed. The results demonstrated here have implications in preparing various sulfide chalcogels.

2.
RSC Adv ; 14(36): 26580-26584, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39175686

RESUMEN

Plasmid-based microbial systems have become a major avenue for the production of pharmaceutical and chemical products; however, antibiotics are often required to maintain the stability of the plasmid. To eliminate the need for antibiotics, we developed a symbiotic system between plasmids and hosts by knocking out the essential gene of folP on the chromosome and placing it on the same plasmid as l-amino acid dehydrogenase (aadL); the resulting strain was named E. coli A06ΔfolP. To increase the copy number of aadL, different strengths of promoters were used for the expression of folP, resulting in the creation of a mutant E. coli A17ΔfolP. The yield of phenylpyruvic acid (PPA) from E. coli A17ΔfolP (4.1 ± 0.3 g L-1) was 1.9-fold that of E. coli A06ΔfolP (2.1 ± 0.2 g L-1). Next, the stability of plasmids was tested, and results showed that the plasmids could be maintained stably for 10 transfer numbers under antibiotic-free conditions. Finally, E. coli A17ΔfolP was used to produce PPA; the yield of PPA was 18.7 g L-1 within 14 h.

3.
Int J Biol Macromol ; 178: 434-443, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33647338

RESUMEN

Thermomicrobium roseum sarcosine oxidase (TrSOX) was a N-demethylase with specific substrate chiral selectivity, outstanding thermostability and environmental resistance. To promote the expression of TrSOX in Bacillus subtilis W600, the HpaII promoter of pMA5 plasmid was replaced by constitutive or inducible promoters. Through orthogonal experiment, the expression process was optimized, B. subtilis W600 cells containing pMA5-Pxyl-trSOX plasmid were cultivated until OD600nm reached 2.0 and were then induced with 1.6% xylose at 37 °C for 2 h, and the native environment of T. roseum was simulated by heating at 80 °C, with the productivity of TrSOX increased from ~8.3 to ~66.7 µg/g wet cells; and the simulated high temperature was the key switch for the final folding. To reduce the surface hydrophobicity, a S320R mutant was built to form a hydrophilic lid around the entrance of the substrate pocket, and the yield of TrSOX (S320R) was ~163.0 µg/g wet cells, approximately 20 folds as that in the initial expression system. This mutant revealed the similar secondary structure, stability, resistance, chiral substrate selectivity and optimal reaction environment with wild type TrSOX; however, the N-demethylation activities for amino acid derivative substrates were dramatically increased, while those for hydrophobic non-amino acid compounds were repressed.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/biosíntesis , Chloroflexi/genética , Expresión Génica , Regiones Promotoras Genéticas , Pliegue de Proteína , Sarcosina-Oxidasa/biosíntesis , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Chloroflexi/enzimología , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Sarcosina-Oxidasa/genética
4.
Research (Wash D C) ; 2020: 5714754, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32607498

RESUMEN

Searching for light and miniaturized functional device structures for sustainable energy gathering from the environment is the focus of energy society with the development of the internet of things. The proposal of a dynamic heterojunction-based direct current generator builds up new platforms for developing in situ energy. However, the requirement of different semiconductors in dynamic heterojunction is too complex to wide applications, generating energy loss for crystal structure mismatch. Herein, dynamic homojunction generators are explored, with the same semiconductor and majority carrier type. Systematic experiments reveal that the majority of carrier directional separation originates from the breaking symmetry between carrier distribution, leading to the rebounding effect of carriers by the interfacial electric field. Strikingly, NN Si homojunction with different Fermi levels can also output the electricity with higher current density than PP/PN homojunction, attributing to higher carrier mobility. The current density is as high as 214.0 A/m2, and internal impedance is as low as 3.6 kΩ, matching well with the impedance of electron components. Furthermore, the N-i-N structure is explored, whose output voltage can be further improved to 1.3 V in the case of the N-Si/Al2O3/N-Si structure, attributing to the enhanced interfacial barrier. This approach provides a simple and feasible way of converting low-frequency disordered mechanical motion into electricity.

5.
Research (Wash D C) ; 2019: 5832382, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31922135

RESUMEN

Static heterojunction-based electronic devices have been widely applied because carrier dynamic processes between semiconductors can be designed through band gap engineering. Herein, we demonstrate a tunable direct-current generator based on the dynamic heterojunction, whose mechanism is based on breaking the symmetry of drift and diffusion currents and rebounding hot carrier transport in dynamic heterojunctions. Furthermore, the output voltage can be delicately adjusted and enhanced with the interface energy level engineering of inserting dielectric layers. Under the ultrahigh interface electric field, hot electrons will still transfer across the interface through the tunneling and hopping effect. In particular, the intrinsic anisotropy of black phosphorus arising from the lattice structure produces extraordinary electronic, transport, and mechanical properties exploited in our dynamic heterojunction generator. Herein, the voltage of 6.1 V, current density of 124.0 A/m2, power density of 201.0 W/m2, and energy-conversion efficiency of 31.4% have been achieved based on the dynamic black phosphorus/AlN/Si heterojunction, which can be used to directly and synchronously light up light-emitting diodes. This direct-current generator has the potential to convert ubiquitous mechanical energy into electric energy and is a promising candidate for novel portable and miniaturized power sources in the in situ energy acquisition field.

6.
Sheng Wu Gong Cheng Xue Bao ; 26(8): 1135-42, 2010 Aug.
Artículo en Zh | MEDLINE | ID: mdl-21090120

RESUMEN

We report here a novel membrane transfer-based DNA detection method, in which alkaline phosphatase labeled gold nanoparticle (AuNP) probes were used as a means to amplify the detection signal. In this method, the capture probe P1, complimentary to the 3' end of target DNA, was immobilized on the chip. The multi-component AuNP probes were prepared by co-coating AuNPs with the detecting probe P2, complimentary to the 5' end of target DNA, and two biotin-labeled signal probes (T10 and T40) with different lengths. In the presence of target DNA, DNA hybridization led to the attachment of AuNPs on the chip surface where specific DNA sequences were located in a "sandwich" format. Alkaline phosphatase was then introduced to the surface via biotine-streptavidin interaction. By using BCIP/NBT alkaline phosphatase color development kit, a colorimetric DNA detection was achieved through membrane transfer. The signal on the membrane was then detected by the naked eye or an ordinary optical scanner. The method provided a detection of limit of 1 pmol/L for synthesized target DNA and 0.23 pmol/L for PCR products of Mycobacterium tuberculosis 16S rDNA when the ratio of probes used was 9:1:1 (T10:T40:P2). The method described here has many desirable advantages including high sensitivity, simple operation, and no need of sophisticated equipment. The method can be potentially used for reliable biosensings.


Asunto(s)
Sondas de ADN/química , Oro/química , Nanopartículas del Metal/química , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Colorimetría/métodos , Sondas de ADN/genética , ADN Bacteriano/genética , Humanos , Mycobacterium tuberculosis/aislamiento & purificación , Hibridación de Ácido Nucleico/métodos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda