RESUMEN
KEY MESSAGE: VAMP726/VAMP725 and SYP131 can form a part of a SNARE complex to mediate vesicle secretion at the pollen tube apex. Secretory vesicle fusion with the plasma membrane of the pollen tube tip is a key step in pollen tube growth. Membrane fusion was mediated by SNAREs. However, little is known about the composition and function of the SNARE complex during pollen tube tip growth. In this study, we constructed a double mutant vamp725 vamp726 via CRISPRâCas9. Fluorescence labeling combined with microscopic observation, luciferase complementation imaging, co-immunoprecipitation and GST pull-down were applied in the study. We show that double mutation of the R-SNAREs VAMP726 and VAMP725 significantly inhibits pollen tube growth in Arabidopsis and slows vesicle exocytosis at the apex of the pollen tube. GFP-VAMP726 and VAMP725-GFP localize mainly to secretory vesicles and the plasma membrane at the apex of the pollen tube. In addition, fluorescence recovery after photobleaching (FRAP) experiments showed that mCherry-VAMP726 colocalizes with Qa-SNARE SYP131 in the central region of the pollen tube apical plasma membrane. Furthermore, we found that VAMP726 and VAMP725 can interact with the SYP131. Based on these results, we suggest that VAMP726/VAMP725 and SYP131 can form a part of a SNARE complex to mediate vesicle secretion at the pollen tube apex, and vesicle secretion may mainly occur at the central region of the pollen tube apical plasma membrane.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Tubo Polínico/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismoRESUMEN
Calcineurin B subunit (CNB) is the regulatory subunit of calcineurin (CN), and its classical function is to regulate the activity of CN. Research in our laboratory has revealed that the recombinant human CNB (rhCNB) is a good antitumor candidate and can be internalized by tumor cells via TLR4 receptor complexes and targeted to tumor tissue in nude mice. However, the fragment or domain of rhCNB mediating internalization and target delivery has not been identified. To explore fragment- mediated rhCNB internalization and target delivery, we generated truncated derivatives of rhCNBs by recombinant DNA technology and examined their cellular uptake. Interactions between truncated rhCNBs and the TLR4 receptor were studied by ELISA and co-immunoprecipitation, and targeting of model tumors in nude mice was examined. The results showed that one truncated derivative, Trun3 (124-169aa), was taken up by cells and targeted tumors with almost the same efficiency as intact rhCNB. These results indicate that Trun3 (45aa) contains the major sequence responsible for rhCNB internalization and tumor targeting and might be developed for drug delivery to tumors.
Asunto(s)
Calcineurina/genética , Péptidos/administración & dosificación , Receptor Toll-Like 4/metabolismo , Animales , Calcineurina/química , Calcineurina/metabolismo , Línea Celular Tumoral , Células Hep G2 , Humanos , Ratones , Ratones Desnudos , Péptidos/química , Péptidos/genética , Péptidos/farmacología , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologíaRESUMEN
Isocitrate dehydrogenase kinase/phosphatase (AceK) is a bifunctional enzyme with both kinase and phosphatase activities that are activated by Mg2+. We have studied the interactions of Mn2+and Mg2+ with AceK using isothermal titration calorimetry (ITC) combined with molecular docking simulations and show for the first time that Mn2+ also activates the enzyme activities. However, Mn2+ and Mg2+ exert their effects by different mechanisms. Although they have similar binding constants (of 1.11 × 105 and 0.98 × 105 M-1, respectively) for AceK and induce conformational changes of the enzyme, they do not compete for the same binding site. Instead Mn2+ appears to bind to the regulatory domain of AceK, and its effect is transmitted to the active site of the enzyme by the conformational change that it induces. The information in this study should be very useful for understanding the molecular mechanism underlying the interaction between AceK and metal ions, especially Mn2+ and Mg2+.
Asunto(s)
Magnesio/farmacología , Manganeso/farmacología , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Calorimetría , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Escherichia coli/enzimología , Magnesio/metabolismo , Manganeso/metabolismo , Modelos MolecularesRESUMEN
BACKGROUND: Recombinant human calcineurin B subunit (rhCNB) has been shown to be an immune-stimulatory protein promoting cytokine production and inducing phenotypic maturation of Dendritic cells (DCs). In vivo, it has good antitumor efficacy, and has potential as an antitumor drug. Exogenous rhCNB was found to be internalized into tumor cells via the Toll-like receptor 4 (TLR4) complex, but it was not known whether its immuno-modulatory and antitumor functions involved entry by this same route. METHODS: The production and secretion of the cytokines and chemokines in innate immune cells induced by rhCNB were determined by ELISA, and the expression of CD40, CD80, CD86, and MHCII was analyzed by FACs. Experimental Lewis lung cancer (LLC) model was prepared in C57 BL/6 wild-type (WT) mice, TLR4-/- mice or their littermates by the inoculation of LLCs in their right armpit, and then administrated daily intraperitoneal injections (0.2 mL) of normal saline, rhCNB 20 mg/kg, and rhCNB 40 mg/kg, respectively. RESULTS: Recombinant human calcineurin B subunit promoted the production of antitumor cytokines by innate immune cells, and culture supernatants of rhCNB-stimulated immune cells induced apoptosis of LLCs. In addition, rhCNB up-regulated CD40, CD80, CD86, and MHCII expression in macrophages and DCs in TLR4+ cells but failed to do so in TLR4 deficient cells. rhCNB also induced the formation of CD4+ and CD8+ T cells in splenocytes from WT mice, but not from TLR4-deficient littermates. Intraperitoneal administration of WT C57BL/6 mice with rhCNB resulted in a 50% reduction in LLC tumor growth, but failed to inhibit tumor growth in TLR4-/- littermates. CONCLUSIONS: The in vivo antitumor and immunomodulatory effects of rhCNB are mediated by the TLR4. This conclusion is important for the further understanding and development of rhCNB as an antitumor drug.
Asunto(s)
Antineoplásicos/administración & dosificación , Calcineurina/administración & dosificación , Carcinoma Pulmonar de Lewis/tratamiento farmacológico , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Animales , Antineoplásicos/farmacología , Calcineurina/genética , Calcineurina/farmacología , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/inmunología , Carcinoma Pulmonar de Lewis/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Quimiocinas/metabolismo , Citocinas/metabolismo , Relación Dosis-Respuesta a Droga , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Técnicas de Inactivación de Genes , Humanos , Inyecciones Intraperitoneales , Ratones , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/farmacología , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
This work aims to investigate the role of the loopß3αC amino acids in the structure and function of isocitrate dehydrogenase kinase/phosphatase (AceK). The results demonstrate that the precise configuration of loopß3αC is very important for AceK structure and function: structural changes alter the affinity of the enzyme for the isocitrate dehydrogenase (ICDH), which modifies enzyme activity. Intriguingly, D340 is significant for the retention of kinase and phosphatase activities, for the conformational stability of AceK and for binding ICDH. The deletion Δ341-345 increases enzyme activity by increasing the maximum velocity and affinity for ICDH. The ß3αC loop is thus critical for the structure and function of AceK.
Asunto(s)
Proteínas de Escherichia coli/química , Isocitrato Deshidrogenasa/química , Dominio Catalítico , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , MutaciónRESUMEN
Isogarcinol, a bioactive polyisoprenylated benzophenone derivative isolated from Garcinia mangostana L., has been shown previously to exert a strong inhibitory effect on calcineurin and is thus a potential oral, low-toxicity immunomodulatory drug. In the present study, enzyme kinetic analysis showed that inhibition of calcineurin by isogarcinol was competitive. Fluorescence spectroscopy indicated that isogarcinol bound to calcineurin. Isothermal titration calorimetry showed that binding was mainly driven by enthalpy, and was exothermic because the enthalpy change exceeded the entropy reduction. The interaction force is either hydrogen bonding or Van der Waals forces. Fluorescence resonance energy transfer and molecular docking experiments indicated that there were two potential binding sites for isogarcinol in the catalytic domain of calcineurin. In summary, isogarcinol binds directly to calcineurin in vitro, unlike the classical calcineurin inhibitors cyclosporin A and tacrolimus.