Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Nanotechnology ; 34(6)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36317313

RESUMEN

Global materials' and energy constraints and environmental issues call for a holistic approach to waste upcycling. We propose a chemically rational, cost-effective and environmentally friendly recovery of non-leaching gold from e-waste using aqueous chemistry with hydrogen peroxide, an environmentally benign oxidant, and lactic acid, a food chain byproduct. The oxidation of the base metals enables the release of gold in its metallic state in the form of flakes subsequently separated via filtration. Our main byproduct is a precursor of Cu2O, a relevant metal oxide for solar energy conversion applications. The recovered gold was characterized by scanning electron microscopy, energy dispersive spectroscopy and x-ray photoelectron spectroscopy to gain insight into the morphology of the flakes and their chemical composition. Furthermore, recovered gold was used to successfully fabricate the source and drain electrodes in organic field-effect transistors.


Asunto(s)
Residuos Electrónicos , Eliminación de Residuos , Oro , Residuos Electrónicos/análisis , Alimentos , Peróxido de Hidrógeno/química , Reciclaje/métodos
2.
Chempluschem ; : e202400263, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39172058

RESUMEN

Ruthenium is relevant for a broad range of applications, including catalysis and electronics. Like other metals of the platinum group, ruthenium stands out as one of the rarest elements in the Earth's crust. The demand for Ru from the industry is putting pressure on its availability. Hence, its recovery from secondary sources is imperative. Fashion solid residues of the plating industry are an important waste stream for Ru. Within this context, we propose a novel approach to Ru recovery for its safe, sustainable, and economically affordable upcycling. The approach is based on peeling from waste metal wires by a green oxidizing agent, H2O2, in an environment acidic by lactic acid, a by-product of the food industry. Peeled flakes were characterized by scanning electron microscopy, energy dispersive spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy for their structure and (surface) chemical composition and bonding. Inductively Coupled Plasma Optical Emission Spectroscopy shows the ultra-low concentration of noble metals in the leachate, thereby suggesting their quantitative recovery in their metallic state. Further, we observed the colloidal nature of the washing water of the peeled flakes. Therefore, we hypothesized the presence of nanoparticles in the washing water and went for their characterization.

3.
Nanoscale Adv ; 5(19): 5295-5300, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37767035

RESUMEN

Eumelanin, the brown-black member of the melanin biopigment family, is a prototype material for sustainable (green) organic electronics. Sepia eumelanin (Sepia) is a type of biosourced eumelanin extracted from the ink sac of cuttlefish. Electron microscopy and scanning probe microscopy images of Sepia show distinguishable near spherical granules with diameters of about 150-200 nm. We have recently reported on predominant electronic transport in printed films of Sepia formulated inks including the (insulating) binder Polyvinyl-butyral (PVB). In that work, we proposed that inter-granular percolative transport, observed for micrometric interelectrode distances, is promoted by the confining action of the PVB binder on the Sepia granules. Considering that inter-granular transport implies intra-granular transport, in this work we proceeded to a nanoscale study of Sepia granules by High Resolution Atomic Force Microscopy (HR-AFM) and Conductive-AFM (c-AFM). We have observed protrusions on the surface of the Sepia granules, suggesting sub-granular structures compatible with the hierarchical development of Sepia, as proposed elsewhere. For films of Sepia formulated inks deposited on gold-coated substrates, c-AFM revealed, for the very first time, a nanoscale electrical response. Nanoscale studies provide the key to structure-property relationships in biosourced materials strategic for sustainable organic electronics.

4.
Sci Rep ; 5: 12677, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26238970

RESUMEN

Thermal rectifiers whose forward heat fluxes are greater than reverse counterparts have been extensively studied. Here we have discovered, idealized, and derived the ultimate limit of such rectification ratios, which are partially validated by numerical simulations, experiments, and micro-scale Hamiltonian-oscillator analyses. For rectifiers whose thermal conductivities (κ) are linear with the temperature, this limit is simply a numerical value of 3. For those whose conductivities are nonlinear with temperatures, the maxima equal κmax/κmin, where two extremes denote values of the solid segment materials that can be possibly found or fabricated within a reasonable temperature range. Recommendations for manufacturing high-ratio rectifiers are also given with examples. Under idealized assumptions, these proposed rectification limits cannot be defied by any bi-segment thermal rectifiers.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda